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SUMMARY

Drug discovery as an important scientific area that serves human 
health, requires continuous advancement for improved quality 
of life and survival rates. However, drug discovery is a long 
and expensive process. The studies aimed at dealing with these 
problems have enabled to combination of artificial intelligence 
(AI) with drug development stages. For every step of the R&D 
process, AI plays a vital role in facilitating and accelerating the 
work. Firstly, AI methods (deep learning and convolutional 
neural networks) help predict the 3D structure of protein making 
it easier for the rational design of compounds to target a specific 
protein among other potential outcomes. After estimation of 
the protein structure of interest, it is also possible to determine 
the protein-ligand interactions by utilizing AI technologies like 
random forest. The other stage, namely finding the hit compounds 
is also possible through AI-assisted QSAR models such as deep 
neural networks. Besides, there are many AI methods (k-nearest 
neighbor and support vector machines) for ADMET prediction 
to optimize lead compounds. Finally, AI techniques also aid in 
choosing the most suitable synthesis plan. In the light of the latest 
advances, AI has become the focus of the pharmaceutical industry. 
However, despite the potential benefits of AI in drug discovery, 
several challenges must be considered including the availability 
of suitable data and bioethical issues. This article provides a 
comprehensive review of the benefits and applications of AI in 
various stages of drug discovery. 
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Yapay Zekanın Eczacılıkta Yükselişi: İlaç Keşfinin Geleceğini 
Şekillendirmek

ÖZ

İnsan sağlığına ve refahına hizmet eden önemli bir bilimsel alan 
olan ilaç keşfi, yaşam kalitesinin ve hayatta kalma oranlarının 
iyileştirilmesi için sürekli ilerlemeyi gerektirmektedir. Ancak ilaç keşfi 
uzun ve pahalı bir süreçtir. Bu sorunların üstesinden gelmeye yönelik 
çalışmalar, yapay zekanın ilaç geliştirme süreciyle birleştirilmesini 
sağlamıştır. Ar-Ge sürecinin her adımında yapay zeka, işi kolaylaştırma 
ve hızlandırma konusunda hayati bir rol oynar. Öncelikle, bazı 
yapay zeka yöntemleri (derin ögrenme ve evrişimsel sinir ağları), ilaç 
molekülünün belirli bir proteini hedeflemesini kolaylaştırmak için 
proteinin 3 boyutlu yapısını tahmin etmeye yardımcı olmaktadır. 
Protein yapısının modellenmesiyle beraber, rastgele orman gibi 
yapay zeka algoritmalarından yararlanılarak protein-ligand 
etkileşimlerinin belirlenmesi de mümkün olmaktadır. Takip eden 
aşamada, öncü bileşiklerin keşfi de derin sinir ağları gibi yapay zeka 
destekli QSAR modellerinin kullanılmasıyla sağlanmaktadır. Ayrıca, 
öncü bileşiği optimize etmek amacıyla ADMET tahminine yardımcı 
birçok yapay zeka yöntemi de (k-en yakın komşuluk, and destek vektör 
makineleri) bulunmaktadır. Bunun yanı sıra yapay zeka teknikleri 
en uygun sentez planının seçilmesinde de yol göstericidir. Güncel 
gelişmelerin ışığında yapay zeka, ilaç sektörünün odak noktası haline 
gelmiştir. Ancak, ilaç keşfinde yapay zekanın potansiyel faydalarına 
rağmen, uygun verilerin mevcudiyeti ve biyoetik konular da dahil 
olmak üzere dikkate alınması gereken çeşitli zorluklar da vardır. Bu 
makale, yapay zekanın ilaç keşfinin çeşitli aşamalarındaki yararları 
ve uygulamalarını kapsamlı bir şekilde incelemektedir.

Anahtar Kelimeler: Yapay zeka, ilaç keşfi, makine öğrenmesi, 
derin öğrenme
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INTRODUCTION

The Pioneering Steps of Artificial Intelligence in 
Healthcare

The notion of incorporating machine-based 
intelligence into human daily life has been a 
longstanding concept, with roots in ancient myths 
and the creation of automatons in Chinese and 
Egyptian cultures (Lewis, 2014). Intelligent behavior, 
in this context, is generally defined as making 
decisions according to the information collected 
by the system. This concept eventually paved the 
way for the development of Artificial Intelligence 
(AI) in 1955, marking a significant milestone in the 
intersection of machines and intelligent decision-
making. Subsequently, the integration of AI into 
various parts of the developing world gained 
momentum and its entrance into the pharmaceutical 
field occurred in the 70s with the introduction of 
Dendral at Stanford University (Lindsay et al. 1993). 
Regarded as one of the earliest applications of AI 
in the healthcare system, Dendral played a crucial 
role in identifying unknown organic molecules. It 
achieved this by analyzing mass spectra and using the 
information from chemical databases available at the 
time. Since then, AI has been applied in numerous 
areas of healthcare systems including personalized 
medicine, assisted diagnostics, health economics, 
drug discovery, and development. It is important to 
note that AI encompasses a spectrum of definitions 
and approaches, leading to a diverse range of solutions 
addressing industry challenges today. 

Machine Learning And Deep Learning Models

In an AI concept, it is essential to cover key 
subfields such as solution searching, reasoning, and 
knowledge representation, with particular emphasis 
on the primary paradigm of machine learning (ML). 
ML is an evolving field of computational algorithms 
which are designed to imitate human intelligence by 
learning through the surrounding environment and 
experiences (Naqa and Murphy, 2015). k-nearest 
neighborneighbor (k-NN), support vector machines 

(SVM) and random forest (RF) are the main types 
of ML (Cortes and Vapnik, 1995, Lavecchia et al., 
2013, Melville et al., 2009). The k-NN algorithm, a 
form of instance-based learning or lazy learning, is 
a simple and intuitive method to predict the class, 
property, or rank of a molecule based on the nearest 
training examples in the feature space. It has been 
used for envisaging activities of various compounds 
such as anti-convulsants, dopamine D1 antagonists, 
protein kinase inhibitors, psychoactive cannabinoids, 
steroids, anti-inflammatory and anticancer drugs, 
and estrogen receptor agonists (Lavecchia, 2015). 
Support vector machines (SVMs), as supervised 
machine learning algorithms, have gained popularity 
in drug discovery applications for tasks like 
compound classification and property predictions for 
novel active compounds. In a study applying SVM 
to pharmacokinetic (PK) modeling, Doniger et al. 
worked on 179 central nervous system (CNS) active 
compounds and 145 inactive molecules for predicting 
blood-brain barrier (BBB)penetration. Using 30 tests, 
the AI model was performed with 81.5% success 
(Heikamp and Bajorath, 2014, Doniger et al., 2002). 
Random Forest (RF) is a supervised learning method 
to be applied to classification and some problems. The 
method involves tree predictors that each tree depends 
on the values of a random vector independently and 
with the same layout for each of the generated vectors 
(Breiman, 2001). The optimal selection of chemical 
features (molecular descriptors) is an important act to 
take before the research for the efficient application of 
AI techniques in virtual screening for identification of 
bioactive molecules in drug discovery. This selection 
plays a role in the accuracy of affinity prediction. 
RF-based approaches automatically select molecular 
descriptors of training data for ligands of kinases, 
nuclear hormone receptors, and other enzymes (Cano 
et al., 2017). 

Deep learning (DL), a subfield of ML, involves 
artificial neural networks (ANNs), and provides 
advantages compared to statistical modeling. One 
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notable advantage of DL is that it does not require 
rigidly structured experimental designs, instead, it 
can map functions using historical or incomplete data. 
ANNs are good recognizers of patterns and robust 
classifiers, with the ability to generate when making 
decisions based on imprecise input data (Cheng 
and Sutariya, 2012). ANNs have many application 
areas in drug design such as pharmacokinetics, 
neurodegenerative diseases, cardiovascular diseases, 
infectious and microbial diseases, immunology 
and virology, medical diagnosis, cosmetics and 
dermatology, proteomics-genomics etc. (Dobchev and 
Karelson, 2016). The computational model inspired in 

the natural neurons, ANN, covers the interconnected 
and sophisticated computing factors to process 
information and solve problems. ANNs comprise 
different types, such as multilayer perceptron (MLP) 
networks, recurrent neural networks (RNNs), and 
convolutional neural networks (CNNs). The MLP 
network is used for pattern recognition, optimization 
aids, process identification, and controls. RNNs can 
memorize and store information. CNNs have used in 
biological system modeling, processing complex brain 
functions, pattern recognition, and sophisticated 
signal processing (Paul et al. 2021). Examples of 
method domains of AI are summarized in Figure 1. 

Figure 1. Method domains of AI

Drug Discovery Process

The drug discovery process is a complex and 
long pathway that consists of considerable steps. The 
initial phase involves evaluating of three-dimensional 
(3D) structure of the target protein and examining 
protein-protein/drug interactions. Following target 
identification, potential hit compounds targeted on 
selected protein are chosen by using computer-aided 

drug design systems such as molecular docking, virtual 
screening, and drug repurposing (Rao and Srinivas, 
2011). Once identified, the selected compounds are 
synthesized and then the compounds undergo in 
vitro and in vivo assays to determine their activities, 
toxicities, and pharmacokinetic properties. Moreover, 
quantitative structure–activity relationship (QSAR) 
and de novo studies are utilized in combination with the 
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activity data for lead identification and optimization 
steps. After these steps, the drug candidates are 
selected for preclinical and clinical studies for more 
in-depth analysis (Schneider and Fechner, 2005). The 

drugs that successfully pass all the clinical phases are 
reviewed by FDA or any other autority to be ready  for 
the market (Chan et al., 2019). The drug development 
process is visually summarized in Figure 2.

Figure 2. AI-aided drug development process

Drug development is an extended, complex, and 
costly process, marked by a considerable degree of 
uncertainty regarding the success of a drug (Fuloria 
et al., 2013). The research and development (R&D) 
process requires analyzing a large amount of data 
for hypothesis and compound identification. It 
necessitates the integration of datasets with the 
targeted pathophysiology, extraction of pertinent data 
aligning with specific research goals, and establishing 
correlations between subjects for improvement. For 
every step of the R&D process, AI plays a pivotal role 
in streamlining and expediting the work. 

To discover an effective agent, conducting error-
free lab tests or clinical trials is imperative, as every 
error poses an obstacle and hinders the progress 
of the process. Therefore, developing an agent that 
can efficiently treat individuals with highly accurate 
results is paramount. The integration of advanced 
techniques, such as AI models, into the drug 
discovery process, holds the potential to mitigate 
human-based errors and save valuable time. Major 
biopharmaceutical companies are increasingly 
turning to artificial intelligence as a solution to the 
challenges in drug design. Pfizer, for instance, employs 

a machine learning system called IBM Watson to 
enhance the search for immuno-oncology drugs. 
Sanofi has agreed to utilize the artificial intelligence 
platform developed by the UK-based Exscientia 
to research the treatment of metabolic disorders. 
Numerous other biopharmaceutical companies 
have similar collaborations or internal AI programs, 
reflecting a growing consensus within the industry 
that AI can offer solutions to critical challenges in 
drug development (Fleming, 2018).

Target Identification

The overexpression of numerous proteins is 
the fundamental reason for the progress of many 
diseases. The successful therapeutic approach for 
these  diseases is  design and development of drug 
molecules that target the overexpressed proteins. 
Therefore, it is essential to predict the structure of the 
protein to design the drug molecule that selectively 
interacts with it (Madhukar et al., 2017). Structure-
based drug design, which involves examining the 
three-dimensional (3D) structures of proteins, is a 
valuable strategy for identifying active small molecules 
targeting protein of interest. However, measuring the 
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3D structure of proteins is a time-consuming and 
expensive process, prompting the development of 
algorithms to predict protein structures to overcome 
these problems. Although the sequence knowledge of 
most proteins is currently available, achieving precise 
de novo prediction of their 3D structures remains 
a significant challenge. Recently, the powerful 
capability of feature extraction has enabled the 
utilization of deep learning technologies in predicting 
the secondary structure, backbone torsion angle, and 
residue contacts of proteins (Spencer et al., 2014, 
Li et al., 2017). The use of deep learning modules, 
particularly convolutional neural networks  (CNN), 
is advantageous in addressing the overfitting problem 
in protein structure prediction (Wang and Zhang, 
2017). Notably, the AlphaFold2 model has emerged as 
a highly accurate tool for predicting protein folding, 
as evidenced by the impressive results in the CASP14 
assessment. This model is based on the neural 
network algorithm that incorporates multi-sequence 
alignments and pairwise features, refining predictions 
iteratively (Jumper et al., 2021). The landscape of AI-
based computational tools for target identification is 
further detailed in Table 1.

In research, Jumper and colleagues presented a 
computational method that could predict protein 
structures with near-experimental accuracy. Their 
created neural network AlphaFold was submitted to 
CASP14. AlphaFold structures outperformed rival 
approaches in CASP14 by a significant margin. The 
next best performing method had a median backbone 
accuracy of 2.8 Å r.m.s.d.95, while AlphaFold structures 
had a median backbone accuracy of 0.96 Å r.m.s.d.95 
(Figure 3a). A carbon atom’s width is around 1.4 Å, 
which can be used as a benchmark for precision. When 
the backbone is highly precise, in addition to extremely 
accurate domain structures (Figure 3b). AlphaFold may 
generate highly accurate side chains (Figure 3c) . This 
significantly outperforms template-based approaches, 
even in the presence of strong templates. AlphaFold’s 
all-atom accuracy was 1.5 Å r.m.s.d.95, while the best 
alternative method’s all-atom accuracy was 3.5 Å 
r.m.s.d.95. With precise domains and domain-packing, 
our approaches scale to exceedingly long proteins 
(Figure 3d). Lastly, the model’s ability to produce 
accurate, per-residue dependability estimations should 
allow users to utilize these predictions with confidence 
(Jumper et al., 2021).

Figure 3. High prediction accuracy of AlphaFold structure. a, AlphaFold’s performance on the CASP14 dataset (n = 87 
protein domains) in comparison to the top-15 entries (out of 146 entries), group numbers match the numbers given to 

participants by CASP. The information is provided by the median and its 95% confidence interval, which are calculated us-
ing 10,000 bootstrap samples. b, the real (experimental) structure (green) and the AlphaFold prediction of CASP14 target 
T1049 (PDB 6Y4F, blue) are comparisons. Four residues in the crystal structure’s C terminus are not shown because they 

are B-factor outliers. c, CASP14 target T1056 (PDB 6YJ1). An illustration of a zinc-binding site that is accurately pre-
dicted (while AlphaFold does not specifically predict the zinc ion, it does have correct side chains). d, CASP target T1044, 

a 2,180-residue single (PDB 6VR4) chain was predicted with correct domain packing. The figure is reproduced from 
Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 
(2021). https://doi.org/10.1038/s41586-021-03819-2. Copyright © 2021, The Author(s). The figure was cropped from the 

original one retaining the data provided by authors.
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A study used AI-generative models to create a 
series of hinge cores based on the binding posture 
of a reported chemical (GLPG-3970, 3) with the 
AlphaFold protein structure (Chemistry42). A hit 
molecule targeting SIK2 was produced using a new 
scaffold following molecular docking, manufacturing, 
and biological assessment. Compound 8g was found 
through additional SAR investigation to have better 

efficacy against SIK2 than the previously reported 
inhibitors (Figure 4). In vitro studies also confirmed 
the in silico studies, proving that this compound 
has high activity, good ADMET profiles, and great 
selectivity over other AMPK kinases. As a result, an 
artificial intelligence method for finding new and 
selective kinase inhibitors is offered by this work (Zhu 
et al., 2023).

Figure 4. Design of compound 8g as AMPK kinase inhibitor (Zhu et al., 2023)

Table 1. AI-Based computational tools for target identification

Tools Description (available websites) References

AlphaFold2
An AI system developed by DeepMind to predict a protein’s 3D structure from 
its amino acid sequence. (https://colab.research.google.com/github/sokrypton/ 
ColabFold/blob/main/AlphaFold2.ipynb)

Jumper et al., 2021

RosettaFold
A three tract neural network, learning the patterns in sequences, and protein’s amino acid 
interactions with one another, and predicts a protein’s three-dimensional structure.

 Baek et al., 2021

DeepFragLib Protein-specific fragment library built using deep neural networks. Wang et al., 2019

ProteinNet
A standardized data set for machine learning of protein structure to provide protein 
sequences, structures, MSAs, PSSMs, and standardized training/validation/test splits.

Cao et al., 2012b

MSA: multiple sequence alignments, PSSM: position-specific scoring matrices

Hit Discovery 
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Virtual screening (VS) is one of the primary 
computational methods in drug discovery to identify 
bioactive molecules capable of binding target 
proteins. It is an efficient method that is used in early 
drug development to eliminate compounds that 
cannot target the protein of interest and to identify 
new hits (Lavecchia and Giovanni, 2013). As a result, 
virtual screening has become an indispensable tool in 
overcoming challenges associated with high costs and 
low success rates in drug discovery. Virtual screening 
methods are broadly categorized into two groups: 
structure-based drug design (SBDD) and ligand-based 
drug design (LBDD). SBDD relies on understanding 
the possible interactions between ligands and the 
structurally resolved target protein. On the other 
hand, LBDD focuses on assessing the similarity of 
a designed compound to known bioactive agents. 
SBDD needs 3D structural knowledge of the target 
protein (Dror et al., 2004). The most used technique 
for SBDD, molecular docking, provides the prediction 
of the binding pose of the ligand in the target protein 
and determines its binding affinity (Blundell, 2019). 
In molecular docking techniques, many possible 
ligand poses have relied on the target protein, and 
the ligands are ordered by a scoring function (SF). 
Molecular docking programs implement a search 
algorithm in which the conformation of the ligand 

is determined recursively up to the convergence to 
the minimum energy is achieved. Finally, as the sum 
of the electrostatic and Van der Waals energies, an 
affinity scoring function, ΔG U total i kcal/mol, is used 
to rank the candidate postures. The forces that propel 
these particular interactions in biological systems are 
directed at complementarities between the ligand 
or substrate and the binding site surfaces in terms 
of electrostatics and shape (Pagadala et al., 2017). 
Consequently, an increase in protein-ligand binding 
and structural data makes it possible to identify the 
protein-ligand interactions by using AI technology, 
which provides progress in SBVS (Table 2). 

Recently, many researchers have utilized 
molecular docking techniques to identify the possible 
interactions between compounds and target proteins. 
For example, in a study, to combat viruses a new class 
of compounds was introduced and to assess their 
antiviral efficacy against the major protease M pro 
of SARS-CoV-2 (2019-nCoV) the Auto Dock Vina 
program was used. As a result, when compared to 
lopinavir as a reference drug, three compounds had 
the most promising antiviral efficacy against SARS-
CoV-2. The findings highlight the consistency of the 
in vitro and in silico studies (Alamshany et al., 2023).

Table 2. AI-Based computational tools for hit discovery

Tools Description (available websites) Reference

RepCOOL A novel network-based method for drug repositioning. Fahimian et al.,2020

DeepConv-DTI A deep learning method to predict drug-target interaction. (https://github.com/
GIST-CSBL/DeepConv-DTI) Lee et al., 2019

DeepH-DTA A deep learning method to predict drug-target interaction. (https://github.com/
Hawash-AI/deepH-DT) Abdel-Basset et al., 2020

DeepPurpose Provides the library for drug-target prediction based on deep learning. Huang et al., 2020

AutoDock
Provides the prediction of how small molecules, such as substrates or drug candida-
tes, bind to a receptor of known 3D structure.
(https://autodock.scripps.edu/)

Österberg et al., 2002

MOE
A drug discovery software platform that integrates visualization, modeling, and si-
mulations, as well as methodology development, in one package.
(https://www.chemcomp.com)

Reynolds et al., 2010

GLIDE A molecular modeling software developed by Schrödinger, for docking of small mo-
lecules into proteins and other biopolymers. Pagadala et al., 2017
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Recently, new categories of machine and deep 
learning-based scoring functions (SFs) have been 
introduced to discern the relationship between 
interaction terms for predicting binding affinity. 
ML methods such as RF and SVM are leveraged to 
enhance the efficacy of SFs (Ballester, 2019; Ain et 
al., 2015; Shen et al., 2019; Coley et al., 2020; Li et 
al., 2020). These approaches introduce non-linear 
relationships between individual energy terms and 
binding affinity, notably improving screening and 
scoring capabilities. For instance, Wang and Zhang 
incorporated a ΔvinaRF parameterization correction 
technique, integrating RF with AutoDock scoring 
function, demonstrating excellent performance 
compared to GlideScore XP (Repasky et al., 2012).

Traditional ML methods face limitations in 
manual recognition and feature extraction, hindering 
large-scale applications. The emergence of deep 
learning (DL) methods addresses this challenge. 
Capitalizing on the success of CNN in image 
processing, this technique is employed to extract 
features from protein-ligand interaction maps for 
predicting protein-ligand affinity. Jimenez et al 
utilized a 3D graph CNN model that provides a good 
relationship with experimental data in the datasets 
to show predictive binding affinities (Jimenez et al., 
2018). Pereira et al. established a deep convolutional 
neural networks method called DeepVS that gets 
the outcomes of MD as the input of DCNN, and can 
automatically learn and extract relevant features from 
the basic data (Pereira et al., 2016, Jiang et al., 2018). 

Hit To Lead Optimization 

In the process of lead optimization, potent lead 
compounds can be found by analyzing and predicting 
the activity of a series of drug analogs. The quantitative 
structure-activity relationship (QSAR) models for 
virtual screening are derived by the standard ligand-
based drug design to find the potent candidates 
from a series of hits compounds by prediction of 
pharmacological activity. QSAR mainly refers to 
the use of mathematical methods for examining the 

quantitative mapping relationship of the structural 
or physicochemical properties of compounds with 
their pharmacological activities. By screening the 
molecular database, QSAR method automatically 
chooses the most promising compounds for synthesis 
and analysis. It saves time and money by reducing 
the blindness of the experiment and accelerating 
the drug development process with the desired 
pharmacological activity. The process of QSAR 
method consists of data collection, data selection, 
generating molecular descriptors, the establishment 
of a mathematical model, interpretation, and 
application of models. With the development of ML 
techniques, AI models are used in QSAR research to 
construct mathematical models of the relationship 
between chemical structure and pharmacological 
activity (Zhong et al., 2018, Dobchev et al., 2014, 
Dudek et al., 2006, Ning and Karypis, 2011). Neural 
networks (NNs) method was introduced to QSAR 
analysis by Aoyama et al. in 1990. Various traditional 
ML methods, such as RF and SVM, have also been 
widely utilized to construct QSAR models (Aoyama 
et al., 1990). In recent years, DL methods have been 
implemented to QSAR modeling due to the ability 
of dealing with various chemical characters and the 
merit of extracting features automatically (Ghasemi et 
al., 2018) (Table 3).

Numerous research on the use of AI-assisted 
QSAR models, such as RF and DNN, to identify the hit 
compounds have been published in recent years. To 
show that RF and DNN were better in hit prediction 
efficiency, Tsou LK and colleagues conducted 
comparison tests between DNN and other ligand-
based virtual screening (LBVS) techniques. Several 
triple-negative breast cancer (TNBC) inhibitors 
were identified as strong hits by DNN screening 
of the 165,000-compound database. Their findings 
demonstrate the potential of DNN as an effective hit 
prediction module and offer experimental proof that 
machine learning is capable of identifying strong hits 
in silico from a small training set (Figure 5) (Tsou et 
al., 2020).
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Figure 5. Tsou LK and coworkers’ studies compounds (Tsou et al., 2020)

In a different research, Koksal and Tugcu used 
QSARINS software to create QSAR models that 
predicted the analgesic and anti-inflammatory 
properties of several 2-benzoxazolinone derivatives. 
These models work based on the rule that the drug 
candidates’ hydrophobicity, halogen count, and 
molecular structure shape are important indicators 
of their analgesic and anti-inflammatory properties. 

Seventy-seven novel compounds were introduced as 
possible analgesic and anti-inflammatory medications 
based on the previously investigated compounds and 
the models that were built. As a result, the majority 
of the recently developed compounds showed 
encouraging analgesic and anti-inflammatory effects 
(Tugcu and Koksal, 2018).

Table 3. AI-Based computational tools for hit-tolerated optimization

Tools Description Reference

DeepVS
Firstly, used deep learning to improve the performance of SBVS and used the DCNNs 
model. This method takes the result of molecular docking as the input of DCNN, and 
can automatically learn and extract relevant features.

Pereira et al., 2016 

BindScope CNN-based protein-ligand docking and binding predictor Skalic et al., 2019

DeepConv-DTI
Provides prediction of drug-target interactions via deep learning with convolution 
on protein sequences.

Lee et al., 2019

OntoQSAR
A machine learning model that interprets chemical and biological data in quantitative 
structure-activity relationship studies.

Angelo et al., 2020

QSARINS
A software for the development and validation of multiple linear regression 
Quantitative Structure-Activity Relationship (QSAR) models by Ordinary Least 
Squares method and Genetic Algorithm for variable selection.

Gramatica et al., 2013

SBVS: structure-based drug design, 

DCNN: deep convolutional neural networks, 

CNN: convolutional neural networks
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Lead Optimization 

Prediction of pharmacokinetic properties is not 
only crucial for decreasing the risks of late-stage drug 
development but also aids researchers in optimizing 
screening by prioritizing the testing of the most 
promising compounds. Absorption, distribution, 
metabolism, elimination, and toxicity (ADMET) 
prediction is an efficient method during hit-to-
lead and lead optimization steps. It is documented 
that success rate and production efficiency in the 
drug development process mainly depend on the 
early estimation and optimization of the ADMET 
properties of the lead compounds. However, relying 
on in vivo experiments for estimating the ADMET 
of a compound comes with high costs, prolonged 
time requirements, and the need for substantial 
material and animal resources (Caldwell et al., 2009). 
The utilization of AI-assisted ADMET prediction 
has proven to be a cost-effective strategy, reducing 
drug development costs by up to 50%, making it a 
popular method in early drug discovery (Wang et 
al., 2019; Tan et al., 2010). In addition, the success 
of AI-assisted ADMET prediction has been notably 
enhanced with the availability of high-quality data 
and more accurate statistical analysis methods. There 
are many approaches to ADMET modeling in drug 
discovery. Among ML methods, k-NN, SVM, RF and 
ANNs are used in the ADMET property investigation 
(Obrezanova et al., 2007, Kortagere et al., 2008, Cao et 
al., 2010, Cao et al., 2012, Klon et al., 2006, Lombardo 
et al., 2006, Wang et al., 2016). For example, DeepTox is 
a useful ML method that not only identifies static and 
dynamic properties within the chemical descriptors 
of the compounds but also predicts the toxicity of 
a molecule based on predefined 2500 toxicophore 

features (Mayr et al., 2016). A variety of AI tools used 
in ADMET prediction are detailed in Table 4. 

Computer-aided AI methods are used for 
early and accurate prediction of adverse reaction 
of the drug compounds. For example, using in 
silico methods, Oner et al. analyzed the anticancer 
characteristics of Tetrahydrocannabinol (THC), 
Tetrahydrocannabivarin (THCV), and Cannabidiol 
(CBD). The ADMET properties of these compounds 
was evaluated using Protox-II. According to result, 
CBD has the lowest risk for immunotoxicity, 
carcinogenicity, and hepatotoxicity. On the other hand, 
the possibility of being inert in terms of mutagenicity 
and cytotoxicity is highest. Furthermore, CBD has the 
highest potential for preventing lung cancer (Gallerdo 
et al., 2024).

Günes and colleagues developed a model to 
predict 329 known antidepressant medications 
(ADRs) of which 27 were approved. They then 
looked at three ML algorithms (SVM, k-NN, and 
multilayer perception) to see which is more suitable 
for this task. To predict ADRs with AI model, they 
combined the chemical structures and biological 
properties (target protein, enzymes, and transporters) 
of compounds with the known ADRs of those 
drugs. The model they created using MLP with 
BestFirst and CfsSubsetEval, based on the chemical 
features of the approved antidepressants, correctly 
predicted the ADRs associated with the withdrawal 
of indalpine, zimelidine, pheniprazine, amineptine, 
and medifoxamine. The outcomes demonstrated the 
approach’s external validity by correctly predicting 
a respectable number of previously identified ADRs 
from the literature (Günes et al., 2021).
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Table 4. AI-Based computational tools for lead optimization
Tools Description (available website) Reference

ProTox-II
A webserver for the prediction of toxicity of chemicals. (http://tox.charite.de/
protox_II)

Banerjee et al., 2018

ADMETlab
A platform for systematic ADMET evaluation based on a comprehensively 
collected ADMET database. (http://admet.scbdd.com)

Dong et al., 2018

COSMOfrag
Provides its broad applicability for the accurate prediction of thermodynamic, 
environmental, or physiological properties.

Hornig and Klamt, 2005

ADMET: absorption, distribution, metabolism, excretion, and toxicity

The integration of AI in four essential stages, 
namely target identification, hit discovery, hit-to-lead 
optimization, and lead optimization, significantly 
reduces time and costs compared to traditional 
methods. Notably, some drugs designed through AI-

driven approaches have received approval from the 
FDA for clinical trials (Liu et al., 2019, Mak et al., 
2022, Soni et al., 2022, Pun et al., 2023).  Since 2023, 
four prominent drugs that were FDA-approved for 
clinical trials are listed in Table 5.

Table 5. FDA-approved drugs for clinical trials

Drug Clinical 
phase

Years when began 
the clinical trials

Therapeutical target Pharmacological activity Organization

DSP-1181 Phase 1 2020 5-HT1A receptor agonist Obsessive-compulsive 
disorder

Exscientia and 
Sumitomo Dainippon 
Pharma 

EXS21546 Phase 1 2020 Adenosine A2a receptor 
antagonist

Autoimmune oncology 
treatment

Exscientia and Evotec

DSP-0038 Phase 1 2021 Dual target on 5-HT1A 
receptor and 5HT2A 
receptor antagonist

Alzheimer’s diseases Exscientia and Sumitoto 
Dainippan Pharma

INSO18-055 Phase 2 2023 Anti-fibrotic small 
molecule inhibitor

Idiopathic Pulmonary 
Fibrosis

In silico Medicine

AI-Assisted Synthesis Planning

In drug discovery, the design of drug molecules 
must align with synthesizability to advance through 
the optimization process and yield compounds with 
improved properties. For this reason, organic synthesis 
is an essential part of drug discovery. Choosing the 
most suitable synthesis plan provides many advantages 

in terms of cost and time. Therefore, numerous 
computational approaches have been built to promote 
synthesis planning. There are three main tasks for AI-
assisted synthesis: predicting retrosynthetic strategy, 
forecasting reaction conditions, and predicting side 
products of the selected reaction (Struble et al., 2020, 
Segler et al., 2018) (Figure 6).



594

Dedeoglu-Erdogan, Mat, Gurdal, Koksal

 

Figure 6. AI-assisted synthesis prediction

Retrosynthetic analysis is defined as transforming 
a target molecule into intermediates or precursors 
regardless of the reactivity reagents. Retrosynthesis 
pathway predictions cover the sequential cutting of 
the target compounds at different positions. Monte 
Carlo tree search (MCTS) is a method that was 
used in retrosynthesis prediction to perform branch 
decisions (Browne et al., 2012). In recent years, 
various ML-based techniques have been introduced 
for retrosynthetic reaction prediction. For example, 
Liu et al. used a sequence-to-sequence-based model 
for retrosynthetic reaction prediction (Liu et al., 2017). 
In 2017, Segler et al. utilized the first deep learning 
to find plausible synthetic routes with high yield and 
less time. Instead of manually encoding, a database of 

known reactions is provided to convert into reaction 
templates, considering the core of the reaction and the 
nearest neighbor atoms. The prediction of templates 
related to the targeted product in retrosynthetic 
analysis has been tackled using ANN. This approach 
enables the direct learning of retrosynthetic strategies 
through data. Furthermore, ANNs can select an 
efficient tree-search for a logical pathway among 
numerous reaction templates by filtering out results 
from implausible chemical reactions (Segler et al., 
2017). The work by Segler et al. demonstrated the 
feasibility of utilizing data-driven approaches, and 
this methodology has since been further enhanced 
with the availability of multiple open-sources as well 
as commercial tools (Table 6).

Table 6. AI-Based computational tools for synthesis planning

Tools Description (available website) Reference

Chemical.AI A professional website to predict retrosynthesis routes. https://chemical.ai

AiZynthFinder
A fast, robust, and flexible open-source software for retrosynthetic planning. (http://
www.github.com/MolecularAI/aizynthfinder)

Genheden et al., 2020

SciFinder
Make a whole retrosynthetic analysis powered by the renowned CAS collection of 
reactions, reducing the synthetic planning time.

Gabrielson., 2018

Reaxys
Provides prediction retrosynthesis combines high-quality reaction data with AI tech-
nology.

Goodman., 2009
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According to CAS data, the SciFinder 
retrosynthesis planner builds pathways to desired 
compounds using experimental and predicted 
reaction steps from 121 million reactions in the 
CAS collection, which is compiled over 110 years of 

chemistry research. As an example, using SciFinder, 
the retrosynthesis of compound A is illustrated 
in Figure 7 (https://www.cas.org/resources/press-
releases/scifinder-n-predictive-retrosynthesis).  

Figure 7. An example of a retrosynthesis tool of SciFinder produced at https://scifinder-n.cas.org

AI techniques are also effective in the prediction 
of the products and yields of organic reactions based 
on the molecular properties of the reactants. Recently, 
several studies on AI algorithms to generalize yield 
prediction have been documented (Hessler and 
Baringhaus, 2018, Struble et al., 2020). Recurrent 
neural networks (RNNs) can be used to form de novo 
chemical discovery by using simplified molecular input 
line entry systems (SMILES) string representations of 
the structure. In chemical synthesis, starting materials 
and resulting compounds are encoded by SMILES 
strings and linked in an encoder-decoder architecture. 
The overall performance of this technology has 
demonstrated comparability to rule-based expert 
systems, although significant variations have been 
observed across different reaction classes (Savage et 
al., 2017). An alternative approach involves the use of 
recommender systems to identify reactants yielding 
a desired product in combination with a chemical 

reaction graph. Differently, the recommender systems 
have been employed for identifying reactants yielding 
a targeted product with a chemical reaction graph. 
The utilization of deep neural networks combined 
with a Monte Carlo tree search provides an excellent 
performance for retrosynthetic prediction (Segler et 
al., 2018).

Challenges of Using AI in Healthcare 

Despite many advantages of bringing AI to drug 
discovery, it also has several challenges that must be 
considered (Blanco-Gonzalez et al., 2023, Vamathevan 
et al., 2019). The first challenge is suitable data 
availability. ML and DL approaches require a large 
volume of data for analyzing different tasks (Tsuji et al., 
2021). However, the accessible data can be restricted, 
or data can be low quality or inconsistent, leading to 
low accuracy and reliability of the results (Gomez et 
al., 2018). Another difficulty arises from the fact that 
the data obtained in healthcare services are unclear, 
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noisy, and incomplete. This prevents AI from having 
clean and structured data and makes it difficult to 
apply AI in drug development (Manne and Kantheti, 
2021). Finally, privacy and confidentiality are the 
most controversial topics of using AI in the drug 
discovery process. Providing personal information 
to any database and reusing this information without 
permission causes ethical problems (Aung et al., 2021). 
To overcome this problem, measures protecting the 
confidentiality of patient information are necessary to 
be addressed within certain policies.

CONCLUSION

In summary, AI has attracted a lot of attention 
recently and has been successfully integrated into 
many steps of drug discovery. AI makes the drug 
discovery process shorter, cheaper, more advanced, 
and more reliable when compared to traditional drug 
discovery methods. In addition to assistance in quick 
and seamless identification of the hit compound, AI 
also contributes to the prediction of the potentially 
active drug candidate, understanding of drug-target 
interactions, ADMET properties, as well as suggestions 
of synthesis routes of active molecules. AI can also 
contribute to establishing the safety and efficacy 
of the product in clinical trials, as well as ensuring 
proper positioning and costing in the market through 
comprehensive market analysis and prediction. 
However, there are a limited number of AI-designed 
drugs that recived approval from FDA for clinical 
trials. Although specific challenges remain about the 
implementation of this technology, AI has gained 
a role as an invaluable tool in the pharmaceutical 
industry. All in all, AI serves as a golden key that 
has the potential to save lives by addressing critical 
segments of the drug discovery process, offering hope 
for numerous diseases that currently lack effective 
treatments or preventive measures.

CONFLICT OF INTEREST

The authors declare that there is no conflict of 
interest.

AUTHOR CONTRIBUTION STATEMENT

Meric KOKSAL conceived of the presented idea. 
Meric KOKSAL encouraged Ayça DEDEOĞLU 
ERDOGAN, Armanç MAT and Enise Ece GURDAL 
to investigate and supervised the findings of this 
work. Conceptualization, K.M.; formal analysis, 
G.E.E.; writing-original draft preparation, D.E.A. and 
M.A ; writing-review and editing, K.M. and G.E.E.; 
visualization, K.M; supervision K.M. and G.E.E.; All 
authors have read and agreed to the published version 
of the manuscript.

REFERENCES

Abdel-Basset, M., Hawash, H., Elhoseny, M., 
Chakrabortty, R. K., & Ryan, M. (2020). DeepH-
DTA: deep learning for predicting drug-target 
interactions: a case study of COVID-19 drug 
repurposing. Ieee Access, 8, 170433-170451.

Ain, Q. U., Aleksandrova, A., Roessler, F. D., & 
Ballester, P. J. (2015). Machine‐learning scoring 
functions to improve structure‐based binding 
affinity prediction and virtual screening. Wiley 
Interdisciplinary Reviews: Computational 
Molecular Science, 5(6), 405-424. doi: 10.1002/
wcms.1225.

Angelo, R. M., Io, A. K., Almeida, M. P., Silveira, R. 
G., Oliveira, P. R., Alcazar, J. J. OntoQSAR: An 
ontology for interpreting chemical and biological 
data in quantitative structure-activity relationship 
studies. International Computer Science 
Conference, 203-206, 2020, San Diego, CA, USA

Aoyama, T., Suzuki, Y., & Ichikawa, H. (1990). Neural 
networks applied to pharmaceutical problems. III. 
Neural networks applied to quantitative structure-
activity relationship (QSAR) analysis.  Journal 
of Medicinal Chemistry,  33(9), 2583-2590. doi: 
10.1021/jm00171a037

Aung, Y. Y., Wong, D. C., & Ting, D. S. (2021). The 
promise of artificial intelligence: a review of 
the opportunities and challenges of artificial 
intelligence in healthcare. British Medical Bulletin, 
139(1), 4-15. doi: 10.1093/bmb/ldab016.



597

FABAD J. Pharm. Sci., 49, 3, 583-602, 2024

Alamshany, Z. M., Khattab, R. R., Hassan, N. A., 
El-Sayed, A. A., Tantawy, M. A., Mostafa, A., & 
Hassan, A. A. (2023). Synthesis and molecular 
docking study of novel pyrimidine derivatives 
against COVID-19. Molecules, 28(2), 739. doi: 
10.3390/molecules28020739.

Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., 
Ovchinnikov, S., Lee, G. R., ... & Baker, D. (2021). 
Accurate prediction of protein structures and 
interactions using a three-track neural network. 
Science, 373(6557), 871-876. doi: 10.1126/science.
abj8754

Ballester, P. J. (2019). Selecting machine-learning 
scoring functions for structure-based virtual 
screening. Drug Discovery Today: Technologies, 32, 
81-87. doi: 10.1016/j.ddtec.2020.09.001

Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. 
(2018). ProTox-II: a webserver for the prediction 
of toxicity of chemicals. Nucleic Acids Research, 
46(1), 257-263. doi: 10.1093/nar/gky318

Blanco-Gonzalez, A., Cabezon, A., Seco-Gonzalez, 
A., Conde-Torres, D., Antelo-Riveiro, P., Pineiro, 
A., & Garcia-Fandino, R. (2023). The role of ai 
in drug discovery: challenges, opportunities, 
and strategies. Pharmaceuticals, 16(6), 891.doi: 
10.3390/ph16060891

Blundell, T. L. (1996). Structure-based drug design. 
Nature, 384(6604), 23. doi: 10.1038/384023a0

Bernard, S., Adam, S., & Heutte, L. (2012). Dynamic 
random forests. Pattern Recognition Letters, 33(12), 
1580-1586. doi: 10.1016/j.patrec.2012.04.003

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. 
M., Cowling, P. I., Rohlfshagen, P., ... & Colton, 
S. (2012). A survey of monte carlo tree search 
methods. IEEE Transactions on Computational 
Intelligence and AI in games, 4(1), 1-43. doi: 
10.1109/TCIAIG.2012.2186810

Caldwell, G. W., Yan, Z., Tang, W., Dasgupta, M., 
& Hasting, B. (2009). ADME optimization and 
toxicity assessment in early-and late-phase drug 
discovery. Current Topics in Medicinal Chemistry, 
9(11), 965-980. doi: 10.2174/156802609789630929

Cano, G., Garcia-Rodriguez, J., Garcia-Garcia, A., 
Perez-Sanchez, H., Benediktsson, J. A., Thapa, A., 
& Barr, A. (2017). Automatic selection of molecular 
descriptors using random forest: Application to 
drug discovery. Expert Systems with Applications, 
72, 151-159. doi: 10.1016/j.eswa.2016.12.008

Cao, D. S., Xu, Q. S., Liang, Y. Z., Chen, X., & Li, H. 
D. (2010). Prediction of aqueous solubility of 
druglike organic compounds using partial least 
squares, back‐propagation network and support 
vector machine. Journal of Chemometrics, 24(9), 
584-595.doi: 10.1002/cem.1321

Cao, D. S., Zhao, J. C., Yang, Y. N., Zhao, C. X., 
Yan, J., Liu, S., ... & Liang, Y. Z. (2012). In silico 
toxicity prediction by support vector machine and 
SMILES representation-based string kernel. SAR 
and QSAR in Environmental Research, 23(1-2), 
141-153. doi: 10.1080/1062936X.2011.645874.

Cao, T., Wu, X., & Hu, X.. ProteinNET: A Protein 
Interaction Network Integration System. In 
Modern Advances in Intelligent Systems and Tool, 
71-76, 2012, Berlin, Heidelberg.

Chan, H. S., Shan, H., Dahoun, T., Vogel, H., & 
Yuan, S. (2019). Advancing drug discovery via 
artificial intelligence.  Trends in Pharmacological 
Sciences,  40(8), doi: 592-604. 10.1016/j.
tips.2019.06.004

Cheng, F., & Sutariya, V. (2012). Applications 
of artificial neural network modeling in 
drug discovery. Clinical and Experimental 
Pharmacology, 2(3), 1-2. doi: 10.4172/2161-
1459.1000e113



598

Dedeoglu-Erdogan, Mat, Gurdal, Koksal

Coley, C. W., Eyke, N. S., & Jensen, K. F. (2020). 
Autonomous discovery in the chemical sciences 
part I: Progress. Angewandte Chemie International 
Edition, 59(51), 22858-22893. doi: 10.1002/
anie.201909987

Cortes, C., & Vapnik, V. (1995). Support-vector 
networks. Machine Learning, 20, 273-297. 
Retrieved from https://link.springer.com/
article/10.1007/BF00994018.

Dobchev, D., & Karelson, M. (2016). Have artificial 
neural networks met expectations in drug 
discovery as implemented in QSAR framework. 
Expert Opinion on Drug Discovery, 11(7), 627-639. 
doi: 10.1080/17460441.2016.1186876

Dobchev, D., G Pillai, G., & Karelson, M. (2014). 
In silico machine learning methods in drug 
development. Current Topics in Medicinal 
Chemistry, 14(16), 1913-1922. doi: 10.2174/15680
26614666140929124203

Dong, J., Wang, N. N., Yao, Z. J., Zhang, L., Cheng, Y., 
Ouyang, D., ... & Cao, D. S. (2018). ADMETlab: a 
platform for systematic ADMET evaluation based 
on a comprehensively collected ADMET database. 
Journal of Cheminformatics, 10, 1-11. doi: 10.1186/
s13321-018-0283-x

Doniger, S., Hofmann, T., & Yeh, J. (2002). Predicting 
CNS permeability of drug molecules: comparison 
of neural network and support vector machine 
algorithms. Journal of Computational Biology, 
9(6), 849-864. doi: 10.1089/10665270260518317.

Dror, O., Shulman-Peleg, A., Nussinov, R., & 
Wolfson, H. J. (2004). Predicting molecular 
interactions in silico: I. A guide to pharmacophore 
identification and its applications to drug design. 
Current Medicinal Chemistry, 11(1), 71-90. doi: 
10.2174/0929867043456287.

Dudek, A. Z., Arodz, T., & Gálvez, J. (2006). 
Computational methods in developing 
quantitative structure-activity relationships 
(QSAR): a review. Combinatorial Chemistry & 
High Throughput Screening, 9(3), 213-228. doi: 
10.2174/138620706776055539.

El Naqa, I., & Murphy, M. J. (2015). What is machine 
learning? Springer International Publishing. 3-11, 
2015, Berlin, Germany.

Fahimian, G., Zahiri, J., Arab, S. S., & Sajedi, R. H. (2020). 
RepCOOL: computational drug repositioning via 
integrating heterogeneous biological networks. 
Journal of Translational Medicine, 18(1), 1-10. 
Retrieved from https://translational-medicine.
biomedcentral.com/articles/10.1186/s12967-020-
02541-3

Fleming, N. (2018). How artificial intelligence is 
changing drug discovery. Nature, 557(7706), 55-
55. Retrieved from http://www.nature.com/nature/
index.html

Fuloria, N. K., Fuloria, S., & Vakiloddin, S. (2013). Phase 
zero trials: a novel approach in drug development 
process. Renal Failure, 35(7), 1044-1053. doi: 
10.3109/0886022X.2013.810543

Gabrielson, S. W. (2018). SciFinder. Journal of the Medical 
Library Association: JMLA, 106(4), 588. doi: 10.5195/
jmla.2018.515

Gallardo, A. A., Gutierrez, M. R., Gomez, L. A. J., 
Dumbrique, H. E. L., Liquido, M. I. H., Margaret, 
M., ... & Labrador, A. M. (2024). A Comparative 
Analysis on the Potential Anticancer Properties 
of Tetrahydrocannabinol, Cannabidiol, and 
Tetrahydrocannabivarin Compounds Through 
In Silico Approach. Asian Pacific Journal of 
Cancer Prevention, 25(3), 839-856. doi: 10.31557/
APJCP.2024.25.3.839.

Genheden, S., Thakkar, A., Chadimová, V., Reymond, J. 
L., Engkvist, O., & Bjerrum, E. (2020). AiZynthFinder: 
a fast, robust and flexible open-source software for 
retrosynthetic planning. Journal of Cheminformatics, 
12(1), 70. doi: 10.1186/s13321-020-00472-1

Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., & 
Pérez-Sánchez, H. (2018). Neural network and deep-
learning algorithms used in QSAR studies: merits 
and drawbacks. Drug Discovery Today, 23(10), 1784-
1790. doi: 10.1016/j.drudis.2018.06.016



599

FABAD J. Pharm. Sci., 49, 3, 583-602, 2024

Goodman, J. (2009). Computer Software Review, 
Journal of Chemical Information and Modeling, 49, 
2897-2898. doi: 10.1021/ci900437n

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., 
Hernández-Lobato, J. M., Sánchez-Lengeling, 
B., Sheberla, D., ... & Aspuru-Guzik, A. (2018). 
Automatic chemical design using a data-driven 
continuous representation of molecules. ACS 
Central Science, 4(2), 268-276. doi: 10.1021/
acscentsci.7b00572

Güneş, S. S., Yeşil, Ç., Gurdal, E. E., Korkmaz, E. 
E., Yarım, M., Aydın, A., & Sipahi, H. (2021). 
Primum non nocere: In silico prediction of 
adverse drug reactions of antidepressant drugs. 
Computational Toxicology, 18, 100165. doi: 
10.1016/j.comtox.2021.100165

Gramatica, P., Chirico, N., Papa, E., Cassani, S., & 
Kovarich, S. (2013). QSARINS: A new software for 
the development, analysis, and validation of QSAR 
MLR models. Journal of Computational Chemistry, 
34(24), 2121-2132. doi: 10.1002/jcc.23361

Heikamp, K., & Bajorath, J. (2014). Support 
vector machines for drug discovery. Expert 
Opinion on Drug Discovery, 9(1), 93-104. doi: 
10.1517/17460441.2014.866943

Hessler, G., & Baringhaus, K. H. (2018). Artificial 
intelligence in drug design. Molecules, 23(10), 
2520. doi: 10.3390/molecules23102520

Hornig, M., & Klamt, A. (2005). COSMO f rag: a 
novel tool for high-throughput ADME property 
prediction and similarity screening based 
on quantum chemistry. Journal of Chemical 
Information and Modeling, 45(5), 1169-1177. doi: 
10.1021/ci0501948

Huang, K., Fu, T., Xiao, C., Glass, L., & Sun, J. 
(2020). Deep purpose: a deep learning based 
drug repurposing toolkit. ArXiv Preprint 
ArXiv:2004.08919. doi: 10.48550/arXiv.2004.08919

Jiang, L., Xu, M., Liu, T., Qiao, M., & Wang, Z. Deepvs: 
A deep learning based video saliency prediction 
approach. In Proceedings of the European 
Conference on Computer Vision (eccv), 602-617, 
2018, Munich, Germany.

Jiménez, J., Skalic, M., Martinez-Rosell, G., & 
De Fabritiis, G. (2018). K deep: protein–
ligand absolute binding affinity prediction via 
3d-convolutional neural networks. Journal of 
Chemical Information and Modeling, 58(2), 287-
296. doi: 10.1021/acs.jcim.7b00650

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, 
M., Ronneberger, O., ... & Hassabis, D. (2021). 
Highly accurate protein structure prediction with 
AlphaFold. Nature, 596(7873), 583-589. Retrieved 
from https://www.nature.com/articles/s41586-
021-03819-2

Klon, A. E., Lowrie, J. F., & Diller, D. J. (2006). 
Improved naive Bayesian modeling of numerical 
data for absorption, distribution, metabolism and 
excretion (ADME) property prediction. Journal of 
Chemical Information and Modeling, 46(5), 1945-
1956. doi: 10.1021/ci0601315

Kortagere, S., Chekmarev, D., Welsh, W. J., & Ekins, 
S. (2008). New predictive models for blood–brain 
barrier permeability of drug-like molecules. 
Pharmaceutical Research, 25, 1836-1845. doi: 
10.1007/s11095-008-9584-5

Lavecchia, A. (2015). Machine-learning approaches in 
drug discovery: methods and applications. Drug 
Discovery Today, 20(3), 318-331. doi: 10.1016/j.
drudis.2014.10.012

Lavecchia, A., & Di Giovanni, C. (2013). Virtual 
screening strategies in drug discovery: a critical 
review. Current Medicinal Chemistry, 20(23), 
2839-2860. doi: 10.2174/09298673113209990001

Lee, I., Keum, J., & Nam, H. (2019). DeepConv-DTI: 
Prediction of drug-target interactions via deep 
learning with convolution on protein sequences. 
PLoS Computational Biology, 15(6), e1007129. 
doi: 10.1371/journal.pcbi.1007129



600

Dedeoglu-Erdogan, Mat, Gurdal, Koksal

Lewis, T., & Writer, S. (2014). A brief history of artificial 
intelligence. Live Science, 61(4), 000812561986492 
doi: 10.1177/0008125619864925

Li, H., Hou, J., Adhikari, B., Lyu, Q., & Cheng, J. 
(2017). Deep learning methods for protein torsion 
angle prediction. BMC Bioinformatics, 18(1), 
1-13. Retrieved from https://bmcbioinformatics.
biomedcentral.com/articles/10.1186/s12859-017-
1834-2

Li, H., Sze, K. H., Lu, G., & Ballester, P. J. (2020). 
Machine‐learning scoring functions for 
structure‐based drug lead optimization. Wiley 
Interdisciplinary Reviews: Computational 
Molecular Science, 10(5), e1465. doi: 10.1002/
wcms.1465

Lindsay, R. K., Buchanan, B. G., Feigenbaum, E. A., 
& Lederberg, J. (1993). DENDRAL: a case study 
of the first expert system for scientific hypothesis 
formation. Artificial intelligence, 61(2), 209-261. 
doi: 10.1016/0004-3702(93)90068-M

Liu, B., He, H., Luo, H., Zhang, T., & Jiang, J. (2019). 
Artificial intelligence and big data facilitated 
targeted drug discovery. Stroke and Vascular 
Neurology, 4(4), 206-213. doi: 10.1136/svn-2019-
000290.

Liu, B., Ramsundar, B., Kawthekar, P., Shi, J., 
Gomes, J., Luu Nguyen, Q., ... & Pande, V. 
(2017). Retrosynthetic reaction prediction using 
neural sequence-to-sequence models. ACS 
Central Science, 3(10), 1103-1113. doi: 10.1021/
acscentsci.7b00303

Lombardo, F., Obach, R. S., DiCapua, F. M., Bakken, 
G. A., Lu, J., Potter, D. M., ... & Zhang, Y. (2006). 
A hybrid mixture discriminant analysis−random 
forest computational model for the prediction of 
volume of distribution of drugs in human. Journal 
of Medicinal Chemistry, 49(7), 2262-2267. doi: 
10.1021/jm050200r

Madhukar, N. S., Khade, P. K., Huang, L., Gayvert, 
K., Galletti, G., Stogniew, M., ... & Elemento, 
O. (2017). A new big-data paradigm for target 
identification and drug discovery. Biorxiv, 134973. 
doi: 10.1101/134973

Mak, K. K., Balijepalli, M. K., & Pichika, M. R. (2022). 
Success stories of AI in drug discovery-where do 
things stand?. Expert Opinion on Drug Discovery, 
17(1), 79-92. doi: 10.1080/17460441.2022.1985108

Manne, R., & Kantheti, S. C. (2021). Application of 
artificial intelligence in healthcare: chances and 
challenges. Current Journal of Applied Science and 
Technology, 40(6), 78-89. Retrieved from https://
papers.ssrn.com/sol3/papers.cfm?abstract_
id=4393347

Mayr, A., Klambauer, G., Unterthiner, T., & Hochreiter, 
S. (2016). DeepTox: toxicity prediction using deep 
learning. Frontiers in Environmental Science, 3, 
80. Retrieved from https://www.frontiersin.org/
journals/environmental-science/articles/10.3389/
fenvs.2015.00080/full

Melville, J. L., Burke, E. K., & Hirst, J. D. (2009). Machine 
learning in virtual screening. Combinatorial 
Chemistry & High Throughput Screening, 12(4), 
332-343. doi: 10.2174/138620709788167980

Ning, X., & Karypis, G. (2011). In silico structure‐
activity‐relationship (SAR) models from machine 
learning: a review. Drug Development Research, 
72(2), 138-146. doi: 10.1002/ddr.20410

Obrezanova, O., Csányi, G., Gola, J. M., & Segall, 
M. D. (2007). Gaussian processes: a method for 
automatic QSAR modeling of ADME properties. 
Journal of Chemical Information and Modeling, 
47(5), 1847-1857. doi: 10.1021/ci7000633

Österberg F, Morris GM, Sanner MF, Olson AJ, 
Goodsell DS (2002). Automated docking to 
multiple target structures: incorporation of protein 
mobility and structural water heterogeneity in 
AutoDock. Proteins, 46, 34-40. doi: 10.1002/
prot.10028



601

FABAD J. Pharm. Sci., 49, 3, 583-602, 2024

Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). 
Software for molecular docking: a review. 
Biophysical Reviews, 9, 91-102. doi: 10.1007/
s12551-016-0247-1

Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., 
& Tekade, R. K. (2021). Artificial intelligence in 
drug discovery and development. Drug Discovery 
Today, 26(1), 80. doi: 10.1016/j.drudis.2020.10.010

Pereira, J. C., Caffarena, E. R., & Dos Santos, C. 
N. (2016). Boosting docking-based virtual 
screening with deep learning. Journal of Chemical 
Information and Modeling, 56(12), 2495-2506. doi: 
10.1021/acs.jcim.6b00355

Pun, F. W., Ozerov, I. V., & Zhavoronkov, A. (2023). 
AI-powered therapeutic target discovery. Trends 
in Pharmacological Sciences, 44(9), 561-572. doi: 
10.1016/j.tips.2023.06.010

Rao, V. S., & Srinivas, K. (2011). Modern drug 
discovery process: An in silico approach. Journal 
of Bioinformatics and Sequence Analysis, 2(5), 89-
94. Retrieved from http://www.academicjournals.
org/JBSA

Repasky, M. P., Murphy, R. B., Banks, J. L., Greenwood, 
J. R., Tubert-Brohman, I., Bhat, S., & Friesner, R. A. 
(2012). Docking performance of the glide program 
as evaluated on the Astex and DUD datasets: a 
complete set of glide SP results and selected results 
for a new scoring function integrating WaterMap 
and glide. Journal of Computer-aided Molecular 
Design, 26, 787-799. doi: 10.1007/s10822-012-
9575-9.

Reynolds CH, Merz KM, Ringe D, eds. (2010). Drug 
Design: Structure- and Ligand-Based Approaches 
(1 ed.). Cambridge, UK: Cambridge University 
Press. ISBN 978-0521887236.

Savage, J., Kishimoto, A., Buesser, B., Diaz-Aviles, E., 
& Alzate, C. Chemical reactant recommendation 
using a network of organic chemistry. In 
Proceedings of the Eleventh ACM Conference on 
Recommender Systems, 210-214, 2017, Como, 
Italy. 

Schneider, G., & Fechner, U. (2005). Computer-based 
de novo design of drug-like molecules. Nature 
Reviews Drug Discovery, 4(8), 649-663. Retrieved 
from https://www.nature.com/articles/nrd1799

Segler, M. H., Preuss, M., & Waller, M. P. (2018). 
Planning chemical syntheses with deep neural 
networks and symbolic AI. Nature, 555(7698), 
604-610. Retrieved from https://www.nature.com/
articles/nature25978

Segler, M., Preuß, M., & Waller, M. P. (2017). Towards” 
alphachem”: Chemical synthesis planning with 
tree search and deep neural network policies. 
ArXiv Preprint ArXiv:1702.00020. doi: 10.48550/
arXiv.1702.00020

Shen, C., Ding, J., Wang, Z., Cao, D., Ding, X., & 
Hou, T. (2020). From machine learning to deep 
learning: Advances in scoring functions for 
protein–ligand docking. Wiley Interdisciplinary 
Reviews: Computational Molecular Science, 10(1), 
e1429. doi: 10.1002/wcms.1429

Skalic, M., Martínez-Rosell, G., Jiménez, J., & De 
Fabritiis, G. (2019). PlayMolecule BindScope: 
large scale CNN-based virtual screening on 
the web. Bioinformatics, 35(7), doi: 1237-1238. 
10.1093/bioinformatics/bty758

Soni, K., & Hasija, Y. Artificial Intelligence Assisted 
Drug Research and Development. In 2022 IEEE 
Delhi Section Conference (DELCON), pp. 1-10, 
2022, New Delhi, India.

Spencer, M., Eickholt, J., & Cheng, J. (2014). A deep 
learning network approach to ab initio protein 
secondary structure prediction. IEEE/ACM 
Transactions on Computational Biology and 
Bioinformatics, 12(1), 103-112. doi: 10.1109/
TCBB.2014.2343960

Struble, T. J., Alvarez, J. C., Brown, S. P., Chytil, M., 
Cisar, J., DesJarlais, R. L., ... & Jensen, K. F. (2020). 
Current and future roles of artificial intelligence 
in medicinal chemistry synthesis. Journal of 
Medicinal Chemistry, 63(16), 8667-8682. doi: 
10.1021/acs.jmedchem.9b02120



602

Dedeoglu-Erdogan, Mat, Gurdal, Koksal

Tan, J. J., Cong, X. J., Hu, L. M., Wang, C. X., Jia, 
L., & Liang, X. J. (2010). Therapeutic strategies 
underpinning the development of novel 
techniques for the treatment of HIV infection. 
Drug Discovery Today, 15(5-6), 186-197. doi: 
10.1016/j.drudis.2010.01.004

Tsou, L. K., Yeh, S. H., Ueng, S. H., Chang, C. P., 
Song, J. S., Wu, M. H., ... & Ke, Y. Y. (2020). 
Comparative study between deep learning and 
QSAR classifications for TNBC inhibitors and 
novel GPCR agonist discovery. Scientific Reports, 
10(1), 16771. Retrieved from https://www.nature.
com/articles/s41598-020-73681-1

Tsuji, S., Hase, T., Yachie-Kinoshita, A., Nishino, T., 
Ghosh, S., Kikuchi, M., ... & Tanaka, H. (2021). 
Artificial intelligence-based computational 
framework for drug-target prioritization and 
inference of novel repositionable drugs for 
Alzheimer’s disease. Alzheimer’s Research & 
Therapy, 13(1), 1-15. Retrieved from https://alzres.
biomedcentral.com/articles/10.1186/s13195-021-
00826-3

Tugcu, G., & Koksal, M. (2019). A QSAR Study for 
Analgesic and Anti‐inflammatory Activities of 
5‐/6‐Acyl‐3‐alkyl‐2‐Benzoxazolinone Derivatives. 
Molecular Informatics, 38(8-9), 1800090. doi: 
10.1002/minf.201800090

Vamathevan, J., Clark, D., Czodrowski, P., Dunham, 
I., Ferran, E., Lee, G., ... & Zhao, S. (2019). 
Applications of machine learning in drug 
discovery and development. Nature Reviews Drug 
Discovery, 18(6), 463-477. 

Wang, C., & Zhang, Y. (2017). Improving scoring‐
docking‐screening powers of protein–ligand 
scoring functions using random forest. Journal 
of Computational Chemistry, 38(3), 169-177. doi: 
10.1002/jcc.24667

Wang, L., Ding, J., Pan, L., Cao, D., Jiang, H., & Ding, 
X. (2019). Artificial intelligence facilitates drug 
design in the big data era. Chemometrics and 
Intelligent Laboratory Systems, 194, 103850. doi: 
10.1016/j.chemolab.2019.103850

Wang, N. N., Dong, J., Deng, Y. H., Zhu, M. F., Wen, M., 
Yao, Z. J., ... & Cao, D. S. (2016). ADME properties 
evaluation in drug discovery: prediction of Caco-
2 cell permeability using a combination of NSGA-
II and boosting. Journal of chemical information 
and modeling, 56(4), 763-773. doi: 10.1021/acs.
jcim.5b00642

Wang, T., Qiao, Y., Ding, W., Mao, W., Zhou, Y., & 
Gong, H. (2019). Improved fragment sampling for 
ab initio protein structure prediction using deep 
neural networks. Nature Machine Intelligence, 
1(8), 347-355. doi: 10.1038/s42256-019-0075-7

Zhong, F., Xing, J., Li, X., Liu, X., Fu, Z., Xiong, Z., ... 
& Jiang, H. (2018). Artificial intelligence in drug 
design. Science China Life Sciences, 61, 1191-1204. 
doi: 10.1007/s11427-018-9342-2

Zhu, W., Liu, X., Li, Q., Gao, F., Liu, T., Chen, X., ... 
& Zhavoronkov, A. (2023). Discovery of novel 
and selective SIK2 inhibitors by the application 
of AlphaFold structures and generative models. 
Bioorganic & Medicinal Chemistry, 91, 117414. 
doi: 10.1016/j.bmc.2023.117414


