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SUMMARY

Artificial intelligence (AI)-based approaches have drawn significant 
attention for their potential to address major challenges in drug 
discovery processes, such as time constraints, high costs, and low 
success rates. Specifically, machine learning (ML) and deep learning 
(DL) algorithms are effectively utilized in various stages of drug 
development, including target identification, molecular screening, 
lead compound selection, optimization, and ADMET prediction. In 
this study, the integration of current AI models into pharmaceutical 
R&D processes is examined from an interdisciplinary perspective, and 
their application domains are evaluated through relevant case studies 
in the literature. It has been observed that ML-based methods can 
yield successful results even with limited data, while DL architectures 
offer advantages in modeling complex molecular relationships. 
Furthermore, the architectural frameworks, training strategies, and 
diversity of ML and DL algorithms are comprehensively discussed 
within the scope of the study. It is demonstrated that traditionally 
experience-based decision processes such as retrosynthetic planning 
and formulation development can be accelerated and made more 
sustainable through data-driven systems. Additionally, AI-assisted 
predictions are shown to reduce the experimental burden and 
enhance research efficiency in preclinical and clinical stages. These 
evaluations suggest that AI technologies are not merely supportive 
tools but also strategic components at the core of innovative drug 
discovery approaches.
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İlaç Keşfi Sürecinde Yapay Zekâ Entegrasyonu: Hedeflerden 
Preklinik Kanıta

ÖZ

Yapay zekâ tabanlı yöntemler, ilaç keşfi süreçlerinde karşılaşılan 
zaman, maliyet ve başarı oranı gibi temel sorunlara çözüm üretme 
potansiyeliyle dikkat çekmektedir. Özellikle makine öğrenmesi ve 
derin öğrenme algoritmaları, ilaç geliştirme sürecinin hedef belirleme, 
molekül tarama, öncü bileşik seçimi, optimizasyon ve ADMET 
tahmini gibi aşamalarında etkin biçimde kullanılmaktadır. Bu 
çalışmada, güncel yapay zekâ modellerinin farmasötik Ar-Ge 
süreçlerine entegrasyonu disiplinlerarası bir yaklaşımla ele alınmış; 
literatürde yer alan vaka örnekleriyle bu modellerin uygulama 
alanları değerlendirilmiştir. Makine öğrenmesi tabanlı yöntemlerin 
sınırlı veriyle dahi başarılı sonuçlar üretebildiği, derin öğrenme 
mimarilerinin ise karmaşık moleküler ilişkileri tanımlamada avantaj 
sağladığı gözlemlenmiştir. Ayrıca çalışma kapsamında, makine 
öğrenmesi ve derin öğrenme algoritmalarının mimari yapıları, eğitim 
stratejileri ve model çeşitliliği detaylı olarak ele alınmıştır. Retrosentez 
planlaması ve formülasyon geliştirme gibi geleneksel olarak deneyime 
dayanan karar süreçlerinin, veri odaklı sistemlerle desteklenerek 
daha hızlı ve sürdürülebilir hâle getirilebileceği ortaya konmuştur. 
Preklinik ve klinik aşamalarda yapay zekâ destekli tahminlerin deney 
yükünü azalttığı ve araştırma verimliliğini artırdığı vurgulanmıştır. 
Bu kapsamda yapılan değerlendirmeler, yapay zekâ teknolojilerinin 
yalnızca destekleyici bir araç değil, aynı zamanda yenilikçi ilaç keşif 
yaklaşımlarının merkezinde yer alan stratejik bir unsur olduğunu 
göstermektedir.

Anahtar Kelimeler: Yapay zekâ, ilaç tasarımı, öngörüsel 
modelleme, hesaplamalı ilaç keşfi, sanal tarama.
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INTRODUCTION

In recent years, artificial intelligence (AI) has rev-
olutionized many disciplines, particularly the health 
sciences, by simulating cognitive functions such as 
learning and decision-making. The integration of this 
technology into drug discovery processes marks the 
beginning of a new era by aiming to overcome the 
limitations of traditional methods and resolve the 
growing complexity of biomedical research.

Conventional drug discovery methods rely heav-
ily on experimental procedures, which are both 
time-consuming and costly. Typically, only a few com-
pounds among thousands progress to clinical evalu-
ation, and even fewer reach the market. Developing 
a single drug may take an average of 10 to 15 years 
and cost between 1 to 2 billion USD. Furthermore, up 
to 90% of drug candidates fail during clinical trials. 
These high failure rates not only cause financial losses 
but also result in the inefficient use of human resourc-
es and experimental infrastructure.

As a result, the need for faster, more flexible, and 
more accurate systems that can transcend the limita-
tions of traditional approaches has become increas-
ingly urgent. At this point, AI steps in with its da-
ta-driven analytical capabilities and provides critical 
decision support tools from the early phases of drug 
discovery onward (Parvatikar et al., 2023; Wu et al., 
2024b; Yang, Wang, Byrne, Schneider, & Yang, 2019a).

AI-based methods are being integrated into vari-
ous stages of the drug development pipeline in order 
to overcome these challenges. By leveraging machine 
learning (ML) and its subfield, deep learning (DL), 
accurate predictions can be made on large-scale bio-
medical datasets. These technologies enable the de-
velopment of decision support mechanisms across a 
wide range of processes—from target identification 

and molecular design to synthesis planning and pre-
clinical or clinical studies.

There exists a hierarchical structure between the 
concepts of artificial intelligence, machine learning, 
and deep learning: while AI is the overarching con-
cept, ML represents a subfield that focuses on learn-
ing from data. Deep learning, in turn, is a specialized 
approach within ML that employs multi-layered neu-
ral network architectures for high-level pattern recog-
nition (Janiesch, Zschech, & Heinrich, 2021). These 
interrelated disciplines have the potential to reshape 
the future of pharmaceutical innovation.

This structural relationship, along with the in-
tegration of these approaches into various stages of 
drug discovery and development, is schematically il-
lustrated in Figure 1.

In this study, the historical development of artifi-
cial intelligence and its role in the healthcare sector are 
first examined. Subsequently, AI-driven drug discov-
ery processes are analyzed in detail under the head-
ings of target identification, lead compound discov-
ery, molecular optimization, and synthesis planning. 
The following sections explore machine learning and 
deep learning models, followed by an evaluation of 
their effectiveness based on recent applications in the 
literature. Finally, the integration of AI into pharma-
ceutical development processes is discussed—ranging 
from preclinical stages to clinical research, and from 
formulation development to ethical and regulatory 
considerations. In light of all these sections, the po-
sitioning of AI technologies within pharmaceutical 
research is addressed through an interdisciplinary 
perspective. 
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Figure 1. A schematic representation of the structural hierarchy among AI, ML, and DL, and their roles in 
drug discovery and development processes.

THE HISTORY OF AI & ITS PLACE IN THE 
HEALTHCARE SECTOR

The historical development of AI technologies pro-
vides a crucial foundation for understanding the evo-
lution of their applications in healthcare and drug dis-
covery (Figure 2.). This journey began in 1943 with the 
mathematical modeling of artificial neural networks 
by McCulloch and Pitts (McCulloch & Pitts, 1943) and 
gained conceptual depth with the introduction of the 

Turing Test in 1950 (Turing, 1950). In the following de-
cades, the advancement of approaches such as machine 
learning, deep learning, and big data analytics signifi-
cantly accelerated progress. Since the 1980s, evolving 
neural network architectures have laid the groundwork 
for clinical decision support systems and drug discov-
ery models, especially in areas like visual data process-
ing and natural language processing (Gupta et al., 2021; 
Kaul, Enslin, & Gross, 2020; Niazi, 2023).

Figure 2. Timeline of historical developments in the field of artificial intelligence (1943–2024).
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Visualized through a spiral timeline, these de-
velopments present the evolutionary trajectory of 
AI technologies in drug discovery within a temporal 
perspective—revealing a multilayered progression 
from early mathematical models to the widespread 
use of modern neural network architectures. This 
timeline not only illustrates a technical chronology, 
but also highlights scientific breakthroughs, techno-
logical leaps, and the stages at which AI integration 
gained momentum in pharmaceutical R&D process-
es. In this context, examples such as AtomNet (Wal-
lach, Dzamba, & Heifets, 2015), AlphaFold (Jumper 
et al., 2021), and Insilico Medicine (Zhavoronkov et 
al., 2019) demonstrate that artificial intelligence is not 
only a theoretical concept, but also an effective tool 
for practical applications (Gupta et al., 2021; Insilico 
Medicine, 2022; Kaul et al., 2020; Kumar et al., 2022; 
Li et al., 2024; Niazi, 2023; Rai, Sahu, & Sawant, 2018). 

AI-DRIVEN MOLECULAR DISCOVERY, OP-
TIMIZATION & SYNTHESIS PROCESSES

Target Identification and Lead Compound Dis-
covery

Target Identification

Drug discovery relies on identifying biomolecular 
targets involved in disease mechanisms and discov-
ering lead compounds that interact with them. In the 
era of personalized medicine, integrating molecular, 
environmental, and microbiome data has become 

essential for defining clinically relevant targets. The 
growing regulatory focus on safety and ethics also de-
mands more rigorous target validation studies.

Effectively managing this multidimensional pro-
cess requires hybrid systems that combine human 
expertise with AI-based data processing. Human 
intuition enables recognition of complex biological 
patterns, whereas AI provides cognitive support in 
analyzing massive, multidimensional datasets. Such 
human -AI collaboration- empowered by cheminfor-
matics and knowledge-based technologies- enhances 
the reliability and efficiency of target identification.

By enabling the integration and interpretation of 
large-scale biomedical data, systems biology and net-
work-based computational models grounded in om-
ics data have improved the reliability of target iden-
tification and promoted more holistic, data-driven 
strategies in drug discovery (Katsila, Spyrou, Patrinos, 
& Matsoukas, 2016). Integrating genetic and genomic 
evidence further improves target validation: clinical 
success rates can increase by up to 80% when strong 
genetic support exists for a given target (Wenteler et 
al., 2024).

Oprea and colleagues (2018) classified the hu-
man proteome into four categories -clinically known, 
chemically known, biologically known, and dark 
targets- collectively referred to as the “druggable ge-
nome,” as illustrated in Figure 3 (Oprea et al., 2018).

Figure 3. Classification of the human proteome according to Oprea et al., 2018.
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This classification clearly underscores the vast 
potential that remains untapped in the field of drug 
discovery (Doytchinova, 2022). Accordingly, the Il-
luminating the Druggable Genome (IDG) initiative, 
launched by the U.S. National Institutes of Health 
(NIH) in 2014, aims to systematically elucidate the 
druggable genome. Open-access platforms such as 
Pharos and the Target Central Resource Database 
(TCRD) provide researchers with comprehensive data 
on over 20,000 human protein targets. These resourc-
es have significantly contributed to the understanding 
of underexplored protein targets and have facilitated 
the identification of novel therapeutic opportunities 
(Sheils et al., 2021).

Structural characterization of target macromole-
cules is essential for rational drug design. Techniques 
such as nuclear magnetic resonance (NMR) spec-
troscopy, X-ray crystallography, and more recently, 
cryo-electron microscopy (Cryo-EM) are used to de-
termine protein structures, which are archived in the 

Protein Data Bank (PDB). As of Q1 2025, the PDB 
contains structural data for 234,785 biomacromol-
ecules, while PDBBind includes 3D structures and 
binding affinities for 27,385 complexes. This wealth of 
data on protein-ligand interactions serves as a valu-
able foundation for AI-integrated models, guiding the 
identification of new therapeutic opportunities.

In conclusion, the integration of AI-powered in 
silico approaches with genetic data not only enhances 
the accuracy and clinical success rate of target iden-
tification but also enables the development of more 
time- and cost-efficient drug discovery strategies.

Lead Compound Discovery

Drug discovery has historically relied on various 
approaches, the earliest of which involved serendip-
itous findings and the chemical modification of ex-
isting bioactive molecules. Over time, these empirical 
methods evolved into systematic screening strategies 
based on chemical libraries, molecular targets and AI 
(Doytchinova, 2022) (Figure 4.). 

Figure 4. Evolution of lead discovery

With advances in combinatorial synthesis, au-
tomation, and genomic sequencing, the field shifted 
toward more target-oriented and efficient discov-
ery pipelines. However, the exponential growth in 
compound diversity and target complexity has in-
creasingly challenged conventional experimental 
methods (Wildey, Haunso, Tudor, Webb, & Connick, 
2017). The demand for systematic screening led to the 
development of high-throughput screening (HTS), 
which automates the testing of hundreds of thousands 
of molecules against biological targets. Despite its util-

ity, HTS is costly and resource-intensive, prompting 
a transition toward computational strategies such as 
virtual screening (VS). Integrating AI  and ML algo-
rithms has enabled VS to evolve from a computational 
extension of HTS into a core component of rational 
drug design (RDD) (Figure 5.). By virtually scanning 
large chemical libraries in silico, VS identifies poten-
tial “hit” compounds for experimental validation, thus 
accelerating early-stage drug discovery (Andricopulo 
& Ferreira, 2014). 
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Figure 5. Virtual screening vs HTS

Rational drug design begins with the identifica-
tion of a biological target associated with a specific 
disease and proceeds through the discovery and opti-
mization of ligands that exhibit desired pharmacolog-
ical activity (Doytchinova, 2022). In this context, two 
primary approaches form the foundation of rational 
drug design: 

• Ligand-Based Drug Design 

In many cases, the discovery of pharmacologically 
active new compounds can be achieved without re-
quiring any information about the three-dimensional 
structure of the target biomolecule. In this context, 
LBDD strategies are widely used in the design and 
optimization of new ligands, based on the structural 
and physicochemical properties derived from previ-
ously validated bioactive molecules.  In this method, 
the structural and activity data of inhibitors are an-
alyzed to determine features associated with binding 
efficacy. Subsequently, large compound databases are 
screened to identify drug candidates that match these 
characteristics (Andricopulo & Ferreira, 2014; Wu et 
al., 2024a).  

One of the prominent approaches within LBDD is 
the modeling of Quantitative Structure-Activity Rela-
tionships (QSAR). QSAR approaches aim to describe 
and quantitatively model the relationships between 
molecular features and biological activity. These rela-
tionships are modeled through mathematical formu-
las that allow the prediction of the potential activity of 
compounds that have not yet been synthesized. An-
other frequently employed method within LBDD 
strategies is pharmacophore modeling. This approach 
seeks to identify structural motifs that are commonly 

found in a set of ligands and are assumed to play a 
critical role in binding to the target protein. The pro-
cess involves analyzing the conformational space of 
molecules and aligning common features, ultimately 
leading to the generation of a three-dimensional phar-
macophore hypothesis. This hypothesis can then be 
used to screen compound databases containing mole-
cules with unknown activity (Andricopulo & Ferreira, 
2014). 

Another strategy within LBDD is ligand-based 
virtual screening (LBVS), which enables the identifi-
cation of novel candidate molecules by relying sole-
ly on the structural and physicochemical properties 
of active compounds, without directly utilizing the 
three-dimensional structural information of the mac-
romolecular target. In recent years, the integration 
of ML and deep learning (DL) algorithms into LBVS 
workflows has gained significant attention. These al-
gorithms represent drug and target protein data using 
various encoding methods in vector or graph formats 
and extract meaningful features by processing this in-
formation. In this context, predictions of drug–target 
interaction (DTI) and drug–target affinity (DTA) have 
emerged as key steps within LBVS. This workflow is 
illustrated in Figure 6.

DTI prediction aims to computationally identify 
potential interactions between drug molecules and 
numerous possible targets in the organism. Compared 
to virtual screening, DTI has a narrower focus and can 
be considered a subcomponent of it. In this process, 
existing experimental data and known drug–target 
interactions are leveraged using ML and data mining 
techniques to predict novel potential associations. In 
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ML-based integrated models, DTI prediction is gen-
erally approached as a classification problem, here 
DTI tools produce binary outputs indicating the pres-
ence or absence of interaction between a molecule 

and a target. In contrast, DTA prediction employs re-
gression-based models to estimate quantitative values 
such as Kd, Ki, or IC₅₀ that reflect the strength of the 
interaction (Wu et al., 2024a). 

Figure 6. LBDD

• Structure-Based Drug Design – SBDD 

Structure-based drug design is an approach that 
utilizes the known 3D structure of a target protein. 
More specifically, it is referred to as structure-based 
virtual screening (Ghislat, Rahman, & Ballester, 2021). 
Widely employed in solving various drug design chal-
lenges, Once the structure is resolved, an appropriate 
binding site on the target protein is identified, followed 
either by the optimization of existing ligands or the 
discovery of new ligands through in silico screening 
processes. Promising compounds resulting from this 
process may be synthesized or procured commercially 
and tested in vitro against the target protein. 

Structure-Based Virtual Screening (SBVS) methods 
rely on the computational docking of large libraries of 
small molecules into the binding site of the target pro-
tein. Scoring functions (SFs) are employed to predict the 
binding affinity of ligands positioned within the binding 
site. these functions enable the ranking of compounds 
in chemical libraries based on their predicted affinity 
for the target protein. Compounds estimated to have 
higher binding affinity (i.e., lower Kd, Ki, or ΔG_bind-
ing values) are ranked at the top. These compounds are 
generally assumed to exhibit lower IC₅₀ or EC₅₀ values. 
Scoring functions are not limited to regression-based 
models; some also estimate class probabilities or direct-
ly classify molecules as active/inactive. Molecular dock-
ing is a widely used technique aimed at predicting the 
potential conformations of ligands that can fit into the 

binding pocket of a biological receptor  (Andricopulo & 
Ferreira, 2014; Salgin-Goksen et al., 2021; Tuncel et al., 
2025). The identification of promising lead compounds 
is a complex process that requires the integrative appli-
cation of various strategies. In this context, considering 
that target biomolecules may undergo conformational 
changes at different levels, SBVS strategies can be sup-
ported by molecular dynamics (MD) simulations. MD 
simulations play a fundamental role in predicting mo-
lecular motions and structural changes. 

In certain cases, structural alterations in the tar-
get protein may be limited, allowing ligands to bind 
readily to well-defined binding pockets. However, it 
is also known that some proteins undergo significant 
conformational changes during the molecular recog-
nition process. In such cases, a representative ensem-
ble of multiple conformations of the target protein is 
generated, and incorporating these conformational 
models into SBVS analyses contributes to obtaining 
more meaningful and reliable results. 

MD simulations have been successfully employed 
in elucidating molecular mechanisms supported by 
experimental data. Although they present some lim-
itations in terms of system size and computational 
cost, when combined with medicinal chemistry ap-
proaches, they offer multifaceted contributions to 
drug design efforts (Andricopulo & Ferreira, 2014). 

However, in cases where experimental structur-
al data for the target protein are unavailable, struc-
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ture-based screening processes can be supported by 
AI-based prediction methods. High-accuracy protein 
structure predictions can be achieved using advanced 
deep learning models such as AlphaFold2, while gen-
erative chemistry platforms like Chemistry42 can be 
used to design new molecules based on these pre-

dictions. Consequently, even for biomolecules with 
limited structural information, virtual screening and 
lead discovery can be effectively carried out (Nia-
zi, Zamara, & Magoola, 2024).  The AI-based SBDD 
workflow is illustrated in Figure 7.

Figure 7. SBDD
ML, one of the most advanced fields of artificial in-

telligence, plays a significant role in drug design pro-
cesses. In scenarios where target-specific ML-based 
scoring functions can be trained, various studies have 
reported higher SBVS accuracy compared to classi-
cal scoring functions. ML-based scoring functions 
developed within this context have been shown to 
process available target data effectively. Especially in 
the re-scoring of crystal structures, ML-based mod-
els have demonstrated high accuracy in predicting the 
binding affinity of ligands to target proteins. Similarly, 
successful results have been obtained for redocked li-

gand poses (Ghislat et al., 2021). 

In recent years, studies that integrate MD simu-
lations with ML approaches to improve the accura-
cy and efficiency of binding affinity predictions have 
drawn significant attention. These studies incorporate 
not only classical 3D structural descriptors but also 
dynamic information that reflects structural chang-
es of the system over time, thereby generating more 
comprehensive 4D descriptors (Figure 8.). MD sim-
ulations are capable of modeling dynamic processes 
in biological systems across timescales ranging from 
picoseconds to milliseconds. 

Figure 8. MD + ML Integration

In this context, a study by Jamal et al. developed 
ML-based models to predict biologically active com-
pounds for the Caspase-8 target. During the training 
phase of these models, descriptors derived from MD 
simulations were employed. The study reported that 
models constructed with descriptors derived from 
longer simulations achieved the highest classification 
performance. These findings demonstrate that such 
models can be effectively utilized in the prioritization 

and optimization of lead compounds (Jamal, Grover, 
& Grover, 2019).

Lead Optimization 

Lead optimization is the systematic refinement 
of early hit/lead compounds to improve potency, se-
lectivity, and pharmacokinetic/tox profiles (ADME), 
bridging hit discovery to preclinical/clinical develop-
ment. Building on candidates from HTS and VS (see: 
Target Identification and Lead Discovery), this stage 
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enhances target interactions while improving prop-
erties such as solubility, stability, and bioavailability a 
critical inflection point in drug design.

Traditionally, teams iterate through design syn-
thesis test cycles guided by empirical rules and ex-
pert intuition; this is effective but time-consuming. 
AI-driven methods accelerate the loop by learning 
from large structure–activity and experimental data-
sets to predict binding affinity and ADMET, prioritize 
modifications, and reduce the number of wet-lab it-
erations.

Recent platforms BIOVIA GTD, Query-based 
Molecule Optimization (QMO), Chemistry42, and 
ZairaChem apply generative models (e.g., genetic 
algorithms, neural networks) to propose potent, se-
lective, and structurally novel variants (Bleicher et al., 
2022). For example, in SYK inhibitor programs (en-
tospletinib, lanraplenib), GTD re-identified and re-
fined candidates by constraining chemical space and 
recombining features across series, improving lead 
quality (Bleicher et al., 2022; Loos et al., 2024).

Looking ahead, tighter integration of deep learn-
ing and reinforcement learning with established me-
dicinal chemistry workflows and hybrid models that 
blend expert knowledge with data-centric systems 
should further improve multi-parameter optimiza-
tion. Progress will depend on robust data infrastruc-
tures and close interdisciplinary collaboration (Niazi 
et al., 2024).

AI-Assisted Synthesis Planning and Synthetic 
Accessibility

The 1828 Wöhler urea synthesis launched total 
synthesis as a field. Today, discovery pipelines use li-
gand-based and structure-based virtual screening to 

find binders, but these methods are limited to pre-ex-
isting molecules, constraining chemical space, patent-
ability, and diversity. Hence the rise of de novo design 
yet synthetic accessibility remains the key bottleneck. 
Classical retrosynthesis plans routes by working 
backward from the target to purchasable precursors. 
Effective but manual, it scales poorly for complex 
structures and depends heavily on expert intuition 
motivating AI integration. AI-driven retrosynthesis 
couples large reaction databases with ML to propose 
feasible routes. Typical systems comprise: 

1.	 Representations (SMILES, fingerprints, graph 
encodings), 

2.	 Single-step prediction (template-based rules 
vs template-free bond disconnections), 

3.	 Multi-step planning, and 

4.	 Route evaluation. 

Quality control includes round-trip evaluation 
(forward models regenerate the product), reaction 
diversity metrics (e.g., Jensen–Shannon divergence), 
and feasibility scores (SCScore) alongside ML pre-
dicted yields. Multi-step planning often mirrors re-
inforcement- earning-like decision sequences opti-
mized for cost, step count, and overall yield (Jiang, 
Yu, Kong, Mei, & Luo, 2023). Data-driven approaches 
now often surpass rule-based systems. Wang et al. in-
troduced RetroExplainer, combining the Retro*10 al-
gorithm with commercial reagent databases to ensure 
synthesizability and avoid manual reactant selection; 
across 101 test cases, 86.9% of single-step predictions 
matched literature routes. The method also offered in-
terpretable energy scores and reproduced a four-step 
route to protokylol, as shown in Figure 9, consistent 
with reported chemistry (Wang et al., 2023).
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Figure 9. Retrosynthetic route for protokylol generated by RetroExplainer. The structures shown in grey 
represent intermediate compounds and the final target molecule along the synthetic pathway. At each ret-

rosynthetic step, the blue-highlighted regions indicate literature or dataset examples provided by the model as 
supporting evidence. The red-highlighted structures and arrows represent the model’s decision-making pro-
cess, where the ΔE value displayed on each arrow corresponds to the energy score of the respective synthetic 

step. Lower ΔE scores indicate chemically more plausible transformations.



831

FABAD J. Pharm. Sci., 50, 3, 821-866, 2025

MACHINE LEARNING 

AI is a field of science and engineering that aims 
to enable computers to imitate human behavior, rep-
licate decision-making processes, and solve complex 
tasks autonomously. In its early stages, AI systems 
were built upon predefined rules and formal rep-
resentations of knowledge, where decision-making 
mechanisms relied on these fixed rules. However, the 
dynamic nature of real-world problems has revealed 
the limitations of such rigid systems, highlighting the 
need for more flexible, data-driven learning capabil-
ities.

In response to this need, ML methods have 
emerged, allowing computer programs to improve 
their performance on specific tasks through experi-
ence. ML automates analytical modeling processes 
and enables cognitive functions -such as classifica-
tion, regression, and clustering- to be learned from 
data without explicit programming. With the increas-
ing volume of data, advancements in computational 

infrastructure, and the development of novel algo-
rithms, ML has found widespread application across 
numerous industries.

Progress in ML has also led to the evolution of ar-
tificial neural networks (ANNs) into deeper and more 
complex architectures. DL, which utilizes deep neu-
ral networks (DNNs) comprising multiple layers, en-
ables the learning of high-level representations from 
data. DL models can directly extract intricate patterns 
from raw data and deliver superior performance on 
large-scale datasets. Nevertheless, in scenarios with 
low data dimensionality or limited training data, 
traditional -or shallow- ML algorithms often outper-
form deep learning models, offering not only better 
accuracy but also higher interpretability of the results 
(Janiesch, Zschech, & Heinrich, 2021). A visual rep-
resentation of this conceptual distinction is provided 
in Figure 10, which broadly illustrates the positions of 
shallow and deep learning models within the broader 
machine learning framework.

Figure 10. A schematic classification illustrating the positions of shallow and deep learning algorithms within 
the broader framework of machine learning.
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Ultimately, a hierarchical relationship exists 
among the concepts of AI, ML, and DL: AI represents 
the broadest umbrella term, encompassing the gen-
eral field of intelligent systems, while ML constitutes 
a subfield of AI that focuses on data-driven learning. 
Within ML, deep learning emerges as a specialized 
approach that leverages multi-layered neural network 
architectures to enable advanced pattern recognition 
and representation learning. 

ML approaches are generally categorized into 
three main types: supervised learning, unsupervised 
learning, and semi-supervised learning. Each of these 
paradigms offers specialized techniques tailored to 
distinct data structures and learning objectives (Jani-
esch et al., 2021).

Supervised Learning

Supervised learning is based on training a model 
using labeled datasets. In this approach, each input 
example is presented to the algorithm along with its 
corresponding correct output label. The objective of 
the model is to learn the patterns within these in-
put-output pairs and make accurate predictions on 
new, unseen data with similar structure.

The training process typically involves two main 
phases. In the first phase, the model is trained on a 
labeled training dataset. In the second phase, the 
model’s generalization ability is evaluated using a test 
dataset composed of previously unseen data. During 
this process, the model’s predictions are compared to 
the true outputs, and the discrepancy is quantified us-
ing a loss function. Optimization techniques are then 
employed to minimize this error (Mahesh, 2020; Nas-
teski, 2017).

Supervised learning methods primarily address 
two types of problems: classification and regression. 
Classification tasks aim to assign input data to pre-
defined categories. For instance, classifying lung nod-
ules as benign or malignant based on imaging data 
exemplifies a classification problem. In contrast, re-
gression tasks focus on predicting continuous numer-
ical variables. An example of this is estimating the op-

timal drug dosage for patients based on demographic 
and clinical data using regression-based models 
(Ryan et al., 2023).

This approach is widely applied across both tra-
ditional (shallow) machine learning algorithms and 
deep learning architectures. Traditional methods in-
clude algorithms such as Decision Trees, Naive Bayes, 
and Support Vector Machines, while deep learn-
ing models such as Convolutional Neural Networks 
(CNNs) and Recurrent Neural Networks (RNNs) are 
also trained within the supervised learning paradigm.

Unsupervised Learning

Unsupervised learning is a subfield of machine 
learning that operates on unlabeled data. In this ap-
proach, the algorithm is trained without any pre-
defined labels or known output values associated with 
the input data. The primary goal of the model is to 
uncover similarities, patterns, or structural relation-
ships within the data and to organize the input in a 
meaningful way.

Unlike supervised learning, unsupervised learn-
ing does not involve a “correct answer.” The algorithms 
freely analyze the internal structure of the data and 
attempt to identify hidden patterns or relationships. 
This process is typically associated with tasks such as 
clustering and dimensionality reduction. Clustering 
aims to group data samples with similar characteris-
tics, while dimensionality reduction techniques seek 
to reduce the number of variables in high-dimension-
al data while preserving critical information, thereby 
enabling more concise and interpretable data repre-
sentations.

Because unsupervised learning attempts to reveal 
inherent structures in data without external guidance, 
the learning process is generally more ambiguous 
and complex than in supervised approaches. Never-
theless, it offers significant advantages, particularly 
in large and complex datasets, by enabling automatic 
grouping of data or the discovery of previously un-
recognized patterns (Greene, Cunningham, & Mayer, 
2008; Mahesh, 2020).
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This approach is implemented across both shallow 
ML algorithms and deep learning architectures. For 
instance, K-means clustering and Principal Compo-
nent Analysis (PCA) are widely used conventional 
methods, while Autoencoders and Generative Ad-
versarial Networks (GANs) represent deep learning 
models commonly employed in unsupervised learn-
ing frameworks.

Semi-Supervised Learning

Situated between supervised and unsupervised 
learning, semi-supervised learning seeks to improve 
model performance by leveraging both labeled and 
unlabeled data. Particularly in tasks such as classifi-
cation and clustering, the incorporation of unlabeled 
data can help the model make more robust general-
izations. For example, in classification problems, un-
labeled instances complementing a limited number of 
labeled examples may enable more accurate definition 
of decision boundaries. Similarly, in clustering appli-
cations, prior knowledge indicating that certain data 
points belong to the same group can facilitate the for-
mation of more coherent clusters.

Semi-supervised learning becomes especially 
valuable when labeled data is scarce or difficult and 
costly to obtain—scenarios commonly encountered 
in domains such as computer-aided diagnosis or drug 
discovery. In these contexts, insights derived from 
large volumes of unlabeled data can enhance model 
accuracy and lead to better overall performance com-
pared to models trained solely on labeled datasets 
(Van Engelen & Hoos, 2020).

Within the realm of deep learning, semi-super-
vised learning is implemented through models trained 
on partially labeled datasets. In certain instances, 
models such as GANs are also employed under this 
category. Additionally, RNN architectures like Gated 
Recurrent Units (GRUs) and Long Short-Term Mem-
ory (LSTM) networks are occasionally used within 
semi-supervised learning paradigms. One of the key 
advantages of this approach lies in its ability to signifi-
cantly reduce the reliance on large amounts of labeled 
data (Alzubaidi et al., 2021).

Data Resources

In machine learning–based drug discovery stud-
ies, the availability of high-quality and structured data 
resources is of critical importance.

PubChem is the world’s largest open-access chem-
ical information database, providing comprehensive 
data on chemical compounds and their biological ac-
tivities. It includes chemical structures, physicochem-
ical properties, toxicity data, and 2D/3D structural in-
formation, as well as protein interaction data derived 
from biochemical assays. The data are organized into 
three main categories: Substance (raw chemical re-
cords), Compound (unique structures), and BioAssay 
(results of biological experiments).

ChEMBL is a freely accessible database specifical-
ly developed for drug discovery purposes, containing 
biologically active molecules. Established in 2002 by 
EMBL-EBI, it compiles compounds and their associ-
ated bioassay results from medicinal chemistry liter-
ature, approved drugs, and clinical trial data. Its lat-
est version includes information on over 1.9 million 
compounds, more than 10,000 drugs, and upwards of 
12,000 target proteins.

DrugBank is one of the most widely used and reli-
able open-access drug reference databases. Launched 
in 2006, it offers extensive bioinformatics and 
cheminformatics data on drugs and their correspond-
ing target proteins. Drug-target interaction data in 
DrugBank are curated from scientific publications, 
textbooks, and other major databases.

Protein Data Bank (PDB) serves as the primary 
source for three-dimensional structural information 
on proteins and protein–ligand complexes. As one of 
the earliest open-access biological data repositories, it 
provides 3D structures of proteins, nucleic acids, and 
their complexes, mostly derived through X-ray crys-
tallography and, to a lesser extent, nuclear magnetic 
resonance (NMR) spectroscopy.

UniProt is among the most comprehensive pro-
tein-centric databases, based on protein sequences 
obtained from genome sequencing projects. It pro-
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vides detailed functional annotations of proteins, and 
its Swiss-Prot subset contains manually curated infor-
mation on more than 560,000 verified protein entries.

BRENDA, is an extensive enzyme database es-
tablished in 1987. It contains data on approximately 
84,000 enzymes and nearly 205,000 enzyme–ligand 
relationships. These records are manually curated 
from over 140,000 scientific publications. The ligands 
include substrates, products, activators, inhibitors, and 
cofactors. Users have full access to the entire dataset.

BindingDB, is an open-access database that fo-
cuses on binding affinities between drug-like small 
molecules and protein targets. Its content is derived 
from scientific articles and patents and is integrated 
with other databases such as ChEMBL and PubChem.

PDBbind, is a specialized database that aggregates 
experimentally determined binding affinity data for 
biomolecular complexes from the PDB. Introduced in 
2004, it aims to bridge the gap between protein struc-
tural information and binding energetics. The dataset 
is based on complex structures available in the PDB 
and their associated binding affinity data reported in 
the scientific literature (Niazi et al., 2024).

Data Representations

The successful application of machine learning 
and deep learning algorithms in drug discovery crit-
ically depends on the ability to represent both drug 
candidates and target proteins in numerically inter-
pretable formats. These representations are regarded 
as a fundamental step in computational modeling, as 
they allow for the encoding of the structural, chem-
ical, and biological properties of molecules and pro-
teins. In general, such representations are categorized 
into three main types: string-based, fingerprint-based, 
and graph-based (2D/3D) formats.

One of the most common approaches for ligand 
representation is the Simplified Molecular Input Line 
Entry System (SMILES), which expresses a compound 
as a sequence of characters. This method linearizes 
the molecular graph to generate a textual representa-
tion. However, due to its sequential nature, SMILES 

often fails to capture spatial relationships within the 
molecule, potentially leading to the loss of critical 
structural information.

To overcome these limitations, fingerprint-based 
representations are employed. These representations 
encode molecules as binary vectors based on the pres-
ence or absence of specific substructures-assigning “1” 
to indicate presence and “0” for absence. Among the 
most widely used are Extended Connectivity Finger-
prints (ECFP) or Morgan fingerprints. These repre-
sentations have shown strong performance in molec-
ular similarity analysis and property prediction tasks.

In 2D graph-based molecular representations, at-
oms are treated as nodes and bonds as edges. Each 
node is described by a feature vector capturing its 
chemical or structural characteristics, while an ad-
jacency matrix encodes the connectivity between at-
oms. Some representations are further enriched with 
edge features, offering a more detailed view of the mo-
lecular structure. This format aligns seamlessly with 
Graph Neural Network (GNN)–based models, en-
abling more accurate analysis of molecular topology 
and interactions.

3D graph-based representations consider the spa-
tial coordinates of atoms in a molecule and incorpo-
rate stereochemical information encoded through x, 
y, and z coordinates. These representations are espe-
cially effective in quantum-level property prediction 
tasks and in identifying binding pockets.

Similar strategies are employed for protein rep-
resentations. Protein sequences are typically trans-
formed into binary vectors using one-hot encoding. 
However, such sequence-based representations do 
not inherently capture structural information. To ad-
dress this, contact maps -a form of 2D graphical rep-
resentation- are commonly used. These maps encode 
pairwise relationships between amino acid residues 
in matrix format, allowing for the integration of both 
sequence and structural information.

Finally, 3D graph-based protein representations 
are constructed using structures obtained from data-
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bases such as PDB and AlphaFold. In these graphs, 
nodes may represent either amino acid residues or at-
oms, and edges denote the physical or chemical inter-
actions between them. These 3D representations are 
particularly valuable in advanced tasks such as identi-
fying protein–ligand interaction sites, as they enhance 
model accuracy and generalizability (Wu et al., 2024a).

Traditional (Shallow) Learning (SL)

Traditional machine learning, also referred to as 
shallow learning (SL), encompasses the majority of ma-
chine learning models proposed prior to 2006. Shallow 
learning aims to capture patterns in data using rela-
tively simple and direct approaches. These methods 
typically involve a limited number of parameters and 
shallow model architectures, focusing on identifying 
explicit relationships within the data without learning 
complex representations. Due to their simplicity, shal-
low learning algorithms offer faster training processes 
and higher interpretability. However, when it comes to 
modeling multi-layered or complex structural relation-
ships, their performance is often inferior to that of deep 
learning techniques (Xu, Zhou, Sekula, & Ding, 2021).  

Within the framework of shallow learning, a wide 
range of algorithms has been developed to address 
different types of problems. This section provides a 
detailed overview of core models including Decision 
Trees, Naive Bayes, Support Vector Machines (SVM), 
Ensemble Learning methods, PCA, and K-means 
clustering.

Decision Tree

Decision trees are a machine learning method 
primarily used for classification tasks. This technique 
is based on representing decisions and their possible 
consequences in a tree-like structure, enabling sys-
tematic modeling of the decision-making process. The 
construction of a decision tree begins with the entire 
dataset and involves recursively splitting the data into 
two subsets based on the value of a specific feature. 
This splitting continues at each step until the resulting 
subsets contain instances belonging to a single class.

To determine the decision nodes, the concept of 

entropy is often employed. For each feature, the entro-
py of the resulting subsets is calculated, and the fea-
ture-value pair that results in the lowest total entropy 
is selected as the decision node. Accordingly, each 
node in the decision tree represents a feature and a 
threshold value associated with that feature.

During classification, the data instance is evaluat-
ed starting from the root node, and at each decision 
node, it is compared with the corresponding feature 
and directed to the appropriate branch. This process 
continues until a leaf node is reached. The leaf node 
indicates the predicted class of the instance, thereby 
completing the classification process.

In a decision tree, each node represents a condi-
tion or decision, while branches denote the possible 
outcomes of those decisions. In other words, nodes 
reflect the attributes used for classification, and the 
branches correspond to the possible values of those 
attributes (Mahesh, 2020; Nasteski, 2017).

Naive Bayes

Naive Bayes is a simple yet effective classification 
technique that falls under the category of supervised 
learning methods and is fundamentally based on 
probability theory. The algorithm aims to estimate the 
conditional probability of each class 𝒴 given an object 
𝒳, expressed as P(𝒴 | 𝒳). Through conditional prob-
ability computations, Naive Bayes is widely utilized in 
classification tasks and decision support systems.

Thanks to its straightforward computational re-
quirements, the Naive Bayes algorithm is capable of 
delivering fast results and exhibits reliable perfor-
mance even on small datasets, with low variance. 
Moreover, it allows for incremental learning by 
seamlessly incorporating new data into the system, 
enabling continuous model updates. The algorithm 
is also notably robust in the presence of errors and 
missing values within the dataset.

The flexible and robust nature of the Naive Bayes 
algorithm has facilitated its widespread and effective 
application across various domains (Mahesh, 2020; 
Nasteski, 2017; Webb, Keogh, & Miikkulainen, 2010).
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Support Vector Machines  (SVM)

SVMs are a widely used and effective technique 
in the field of machine learning, primarily employed 
for classification and regression tasks within the su-
pervised learning paradigm. SVM aims to represent 
each input in a high-dimensional feature space and to 
determine the optimal hyperplane that separates the 
data samples. This hyperplane is constructed to maxi-
mize the margin between classes, thereby minimizing 
classification error.

The SVM algorithm is not limited to linearly sep-
arable problems; it can also be applied to nonlinear 
classification tasks through the use of a technique 
known as the kernel trick. This approach maps the 
original data into a higher-dimensional feature space, 
where a linear separation becomes possible.

SVMs are particularly effective in domains char-
acterized by complex data structures and have shown 
strong performance on high-dimensional datasets, 
especially where the number of features exceeds the 
number of samples. However, without proper regular-
ization, SVM models are prone to overfitting, particu-
larly in noisy or sparse data environments.

On the downside, SVM is often considered a “black-
box” algorithm, meaning that the underlying deci-
sion-making process can be difficult to interpret. Specifi-
cally, the rationale behind the selection and optimization 
of the separating hyperplane is not readily transparent, 
which limits the explainability of model outputs (Jiang, 
Gradus, & Rosellini, 2020; Mahesh, 2020).

Ensemble Learning (EL)

EL is a technique in supervised machine learning 
that combines multiple models to produce a collective 
decision. In this approach, each model functions as a 
base learner, trained on labeled data to generate pre-
dictions for new, unlabeled instances. EL may incor-
porate various machine learning algorithms, includ-
ing decision trees, artificial neural networks, or linear 
regression. The central rationale behind this method 
is that the individual errors made by different models 
can offset each other, thereby improving overall pre-

dictive accuracy. As a result, ensemble methods often 
achieve higher performance compared to any single 
model acting alone.

This approach reflects the principle of “wisdom of 
the crowd” in machine learning. A classic demonstra-
tion of this idea was provided by British philosopher 
and statistician Sir Francis Galton. In a contest held 
at a livestock fair, Galton asked participants to esti-
mate the weight of an ox. Although none of the in-
dividual guesses were perfectly accurate, the average 
of all the predictions closely approximated the actual 
weight. This experiment highlighted the potential of 
aggregated predictions to yield more accurate results 
than individual estimates. Inspired by this concept, 
ensemble models aim to combine the outputs of mul-
tiple learners to generate more reliable and accurate 
predictions.

Moreover, ensemble models are particularly effi-
cient when the base learners have low computational 
costs. This enables both more accurate and faster pre-
dictions to be achieved.

Ensemble learning methods are generally catego-
rized into two main frameworks: dependent and in-
dependent.

In the dependent framework, the output of each 
model influences the training of subsequent models. 
Here, misclassified instances in previous iterations are 
given greater importance during the training of new 
models. A well-known example of this approach is the 
AdaBoost algorithm.

In contrast, the independent framework trains each 
model separately, without influence from others. The 
outputs are then aggregated using techniques such as 
majority voting. In this framework, a bootstrapping 
technique is often employed to generate subsets of the 
data—where some samples may be used multiple times 
and others not at all. The Random Forest algorithm, 
which applies the bagging method to decision trees, is 
a representative example of an independent ensemble 
learning strategy (Arifa, Aditsania, & Kurniawan, 2022).
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Principal Component Analysis (PCA)

PCA is a widely used technique for reducing the 
dimensionality of large datasets. By projecting data 
onto a lower-dimensional space, PCA facilitates faster 
and more efficient analysis. The method aims to rep-
resent numerous variables using smaller groups while 
preserving the essential information in the dataset 
and minimizing noise, thus revealing the most mean-
ingful underlying structure.

Also known as the Karhunen–Loève transform, 
PCA is utilized in various applications such as di-
mensionality reduction, data compression, and visu-
alization. Extended versions of this method, including 
probabilistic PCA and kernel PCA, have also been de-
veloped. These approaches contribute to highlighting 
key features and uncovering hidden structural rela-
tionships, particularly in large and complex datasets.

The computational process of PCA is grounded in 
linear algebra and can be efficiently executed by com-
puters. By isolating only the most informative com-
ponents, PCA enhances the performance and speed 
of subsequent machine learning algorithms. Addi-
tionally, it helps mitigate the challenges associated 
with high-dimensional data and reduces the risk of 
overfitting in regression-based models (Kurita, 2019; 
Naeem, Ali, Anam, & Ahmed, 2023).

K-Means 

The K-Means algorithm is one of the most wide-
ly used techniques within unsupervised learning. Its 
primary objective is to partition a dataset into K pre-
defined groups, or clusters, based on data similarity. 
The algorithm operates by assigning data points to 
clusters in such a way that the distance between the 
data points and the centroids of their respective clus-
ters is minimized.

Initially, K centroids are randomly selected. Each 
data point is then assigned to the nearest centroid 
based on a distance metric, typically Euclidean dis-
tance. Subsequently, the centroids are updated by cal-
culating the mean position of all data points assigned 
to each cluster. These steps are iteratively repeated un-

til the cluster assignments stabilize and the centroids 
no longer change significantly.

K-Means is particularly effective for large-scale 
and numerical datasets due to its computational ef-
ficiency and simplicity. However, since the initial 
selection of centroids can significantly influence the 
final clustering outcome, it is often recommended to 
perform multiple runs with different initializations 
to enhance robustness and accuracy (Mahesh, 2020; 
Naeem et al., 2023).

DEEP LEARNING (DL)

DL, a more advanced subfield of machine learn-
ing, aims to capture complex patterns in data through 
multilayered ANNs. These networks are inspired by 
the information processing mechanisms of the bio-
logical nervous system and are composed of intercon-
nected artificial neurons designed to process inputs 
and generate outputs. Each neuron performs basic 
mathematical operations by weighting and summing 
the incoming signals, which are then transformed into 
outputs through activation functions. This layered or-
ganization of numerous neurons lays the foundation 
for learning more intricate representations and deci-
sion-making processes (Montesinos López, Montesi-
nos López, & Crossa, 2022; Singh & Banerjee, 2019).

Artificial neurons, inspired by their biological 
counterparts, operate by aggregating incoming sig-
nals, applying weights to them, and transforming 
the results into outputs through activation functions 
once a predefined threshold is reached. In ANNs, the 
input layer is responsible for receiving data from the 
external environment, hidden layers process this data 
through nonlinear transformations, and the output 
layer generates the final prediction or decision. The 
connections between neurons are mediated by adjust-
able weights that govern the flow of information and 
are optimized during the learning process. In certain 
neural architectures, feedback connections where the 
output of a layer is fed back into a previous layer en-
able more dynamic and interactive learning mecha-
nisms.
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Deep learning overcomes the limited representa-
tional capacity of traditional neural networks, which 
are often constrained to a single hidden layer, by in-
troducing multiple hidden layers to learn more com-
plex and hierarchical patterns. These architectures, 
referred to as DNNs, are capable of mapping intricate 
relationships between inputs and outputs, particular-
ly when trained on large-scale datasets. As the num-
ber of hidden layers increases, so does the model’s 
learning capacity, enabling it to extract progressively 
higher-level abstractions from the data (Montesinos 
Lópezet al., 2022).

The topology of an artificial neural network de-
fines the overall structure of the network and the 
pattern of connections among neurons. Different 
types of connections such as inter-layer, intra-layer, 
and self-connections play a crucial role in determin-
ing the network’s information processing capacity. 
The weights assigned to each connection govern the 
strength and direction of information flow, serving as 
fundamental parameters during the learning process 
(Abiodun et al., 2018).

Today, deep learning has become an indispensable 
approach in domains that rely heavily on large-scale 
datasets, particularly for tasks such as pattern recog-
nition, feature extraction, data-driven prediction, and 
complex decision-making. While previous sections 
have explored how AI-based techniques are inte-
grated into the drug discovery pipeline -from target 
identification to lead compound optimization- this 
section introduces the core principles of deep learn-
ing and outlines selected neural network architectures 
that have demonstrated particular relevance in phar-
maceutical research.

Feedforward Networks (FFNNs)

FFNNs represent the most fundamental architec-
ture of artificial neural networks. In these networks, 
information flows in a single direction—from the 
input layer, through the hidden layers, to the output 
layer. Connections exist only between successive lay-
ers; there are no intra-layer or skip connections. This 

unidirectional flow of information contributes to the 
relatively simple and interpretable structure of feed-
forward neural networks, facilitating their analytical 
tractability (Abiodun et al., 2018).

The architecture of feedforward neural networks 
consists of three fundamental components: the input 
layer, hidden layers, and the output layer. The input 
layer serves as the initial interface where external data 
enters the network. Each input neuron represents an 
independent variable in the model and directly in-
fluences the output depending on the training con-
ditions. Data are received at the input layer, passed 
through one or more hidden layers via feedforward 
propagation, and finally reach the output layer.

The output layer transforms the processed data 
into the final output of the network. The number of 
neurons in this layer is determined by the specific 
task the network is designed to perform. For instance, 
in classification tasks, one output neuron may be as-
signed to each category, whereas in tasks like noise 
reduction, the input and output layers might need to 
contain the same number of neurons.

Hidden layers, located between the input and out-
put layers, enhance the network’s learning capacity. 
These layers, which are not directly connected to the 
external environment, extract pattern-based features 
from the input data and contribute significantly to the 
generation of the final output. The number of neurons 
in the hidden layers plays a critical role in determining 
model performance. If too few neurons are used, the 
network may fail to learn complex patterns, resulting 
in underfitting. Conversely, an excessive number of 
neurons may increase the risk of overfitting and un-
necessarily prolong the training process, thereby rais-
ing computational costs.

Therefore, when designing a feedforward neural 
network, both the number of layers and the number 
of neurons per layer must be carefully determined. 
These parameters directly affect the model’s learning 
capacity and should be optimized based on the nature 
of the problem and the structure of the data (Ben-
Bright et al., 2017).
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In training feedforward neural networks, trial-
and-error-based strategies are commonly employed 
to determine the optimal architecture. One such 
strategy is the Forward Selection Method, which be-
gins by constructing a model with a small number of 
hidden neurons and gradually increases the number 
of neurons based on training and test performance. 
Typically, the process starts with two hidden neurons, 
and additional neurons are incrementally added as 
performance improves.

In contrast, the Backward Selection Method starts 
with a model containing a relatively large number of 
hidden neurons and gradually reduces the number of 
neurons based on performance evaluations. Neurons 
are removed one by one until a noticeable decline in 
performance is observed. Both approaches aim to bal-
ance model capacity and optimize the learning pro-
cess.

In addition to these strategies, pruning techniques 
are also employed to reduce unnecessary complexity 
and accelerate the training process. Pruning involves 
analyzing the connection weights within the network 
and eliminating neurons associated with connections 
whose weights are close to zero. This approach not 
only reduces computational cost but also facilitates 
the development of a more parsimonious and gener-
alizable model (Ben-Bright et al., 2017).

Convolutional Neural Networks (CNNs)

CNNs are among the core deep learning ap-
proaches, distinguished by their multilayered archi-

tectures and high accuracy, particularly in visual data 
processing tasks.

The architecture of CNNs is generally composed 
of three main components: convolutional layers, 
pooling layers, and fully connected layers.

Convolutional layers process input data and inter-
mediate feature maps using a set of kernels to generate 
new feature maps.

Following the convolutional layers, pooling layers 
are applied to reduce the dimensionality of the feature 
maps and to decrease the number of model parame-
ters. 

Finally, fully connected layers transform the 
two-dimensional feature maps into one-dimensional 
vectors and are primarily responsible for tasks such as 
classification. These layers often account for the ma-
jority of a CNN’s total parameters, which significantly 
increases computational cost.

The training of a CNN model typically consists of 
two main phases: forward propagation and backprop-
agation. During forward propagation, the input data 
are processed using the current weights and biases, 
and the predicted output is compared with the true 
labels to compute the loss. Subsequently, in the back-
propagation phase, gradients are calculated using the 
chain rule, and the model parameters are updated ac-
cordingly. After a sufficient number of iterations, the 
learning process is completed. The workflow of the 
general CNN architecture is shown in Figure 11 (Guo 
et al., 2016).

Figure 11. Schematic workflow of a general CNN.
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The large number of parameters involved in deep 
neural networks often leads to undesirable issues such 
as overfitting. To address this challenge, various reg-
ularization strategies have been developed. One such 
strategy is the Dropout technique, which randomly 
deactivates a subset of feature detectors during each 
training iteration to prevent the model from over-
fitting to the training data. This technique enhances 
the model’s generalization capability and reduces the 
risk of overfitting. Dropout is also considered a form 
of ensemble learning, as it effectively trains multiple 
sub-models simultaneously.

In CNNs, which are widely used in visual object 
recognition tasks, data augmentation techniques are 
frequently employed to expand the training dataset. 
These techniques enhance data diversity without ad-
ditional labeling costs, thereby supporting better gen-
eralization. AlexNet stands as an early and notable 
example of leveraging data augmentation to improve 
performance.

Another effective strategy is pre-training, which 
involves initializing a network with previously learned 
parameters instead of random weights. This approach 
accelerates the learning process and improves gener-
alization performance. For instance, models such as 
AlexNet, trained on the ImageNet dataset, are often 
fine-tuned for new tasks and datasets, allowing for 
faster adaptation and improved results.

Another strategy, fine-tuning, is a crucial step for 
adapting models to specific tasks and datasets. For in-
stance, models such as AlexNet, trained on the Ima-
geNet dataset, are often fine-tuned for new tasks and 
datasets, enabling faster adaptation and improved per-
formance. During this process, class labels are typical-
ly required to compute loss functions for model opti-
mization. However, in certain scenarios, these labels 
may be unavailable. To address this limitation, simi-
larity learning methods have been proposed, allowing 
the model to adapt without the need for explicit class 
annotations.

All of these regularization strategies can be applied 
individually or in combination to further enhance the 

overall performance and robustness of CNN models 
(Guo et al., 2016).

CNNs Models

Among the prominent CNN architectures, Alex-
Net stands out as one of the earliest deep learning 
models that brought significant attention to the field. 
Comprising five convolutional layers and three fully 
connected layers -eight layers in total- AlexNet pro-
cesses fixed-size input images through successive 
convolution and pooling operations, ultimately pro-
ducing the final output via fully connected layers. 
Trained on the ImageNet dataset, AlexNet integrated 
regularization techniques such as data augmentation 
and Dropout, and its victory at the 2012 ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC) 
marked a turning point for deep learning research and 
applications (Guo et al., 2016) .

Aiming to increase network depth by reducing 
the size of convolutional kernels, the Visual Geome-
try Group (VGG) model focuses on building deeper 
and more structured networks using small convolu-
tional filters. VGG achieved second place in the 2014 
ILSVRC competition with a Top-5 error rate of 7.3%, 
demonstrating the positive correlation between net-
work depth and performance. In particular, VGG-16 
has become widely used in image processing tasks 
due to its simple architecture and strong compatibility 
with transfer learning.

The winner of the same competition, GoogLeNet, 
introduced the Inception module, which allows multi-
ple convolution operations with different kernel sizes 
to be executed simultaneously. Despite its depth, Goo-
gLeNet effectively reduced the number of parameters 
and offered a more computationally efficient architec-
ture. By incorporating sparse connections and glob-
al average pooling, the model significantly lowered 
computational costs while maintaining a lightweight 
design.

Following the success of GoogLeNet, the Inception 
architecture was developed with the goal of increasing 
network depth while maintaining computational effi-
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ciency. Evolving from Inception V1 to V2 and V3, this 
architecture optimizes multi-scale processing capabil-
ities, enabling deep learning models to be effectively 
applied to larger and more complex datasets.

The Residual Network (ResNet) model was devel-
oped to address the degradation problem caused by 
increasing the number of layers in deep neural net-
works. ResNet adopts the residual learning approach, 
which facilitates the training of very deep networks 
by incorporating sequential residual blocks. This ar-
chitecture enables the model to learn identity map-
pings more effectively, thereby im-proving gradient 
flow and reducing the risk of performance degrada-
tion as the network depth in-creases. For instance, a 
ResNet model with 152 layers possesses a deeper ar-
chitecture compared to shallower networks like VGG, 
while achieving lower error rates and higher accuracy 
(Zhao et al., 2024).

Graph Neural Networks (GNNs)

Graph structures consist of nodes, which represent 
entities, and edges, which denote the relationships or 
connections between these nodes. Such structures 
play a crucial role in modeling complex relational 
systems, including social networks, citation networks, 
and molecular structures. GNN-based approaches 
have found significant applications in pharmaceutical 
research, particularly in modeling molecular struc-
tures and in the discovery of novel drug candidates.

GNNs have been developed to process 
graph-structured data characterized by irregular and 
dynamic topologies, drawing inspiration from tradi-
tional CNNs. While CNNs excel at capturing spatial 
dependencies in grid-like data and RNNs are effective 
at learning sequential correlations, GNNs demon-
strate superior performance on graph-based data by 
modeling complex dependencies through nodes and 
edges (Khemani, Patil, Kotecha, & Tanwar, 2024). 

A graph is a structure composed of nodes inter-
connected by edges. Edges represent the connections 
between nodes. Graphs are employed in relevant do-
mains to model and analyze the relationships between 
objects or entities.

GNNs are neural networks that operate on data 
structures consisting of nodes and edges. The funda-
mental components of a GNN include nodes, edges, 
layers, activation functions, pooling, aggregation, and 
other common neural network components.

A node is a point or vertex in a graph that can be 
connected to other nodes. In GNNs, each node is as-
sociated with a feature vector that contains the prop-
erties of the corresponding entity and primarily rep-
resents the node’s attributes. Node classification is a 
powerful technique in classification problems.

Nodes play a critical role in enabling the network 
to learn from the graph data structure and its connec-
tions. During GNN training, information between 
nodes is propagated via the edges that connect them. 
This process allows the network to learn from the re-
lationships among nodes and to make predictions for 
previously unseen nodes in the graph.

Edges are the connections between nodes in a 
graph. Edge features can provide significant informa-
tion regarding the relationships between nodes. This 
facilitates understanding the types of connections 
shared by nodes in one-to-one, one-to-many, or ma-
ny-to-many relationship contexts. Edge prediction 
plays an important role in link prediction, node clas-
sification, and graph-level classification.

Edge features can be represented as a vector and 
are typically used together with node features, en-
abling the network to learn from both the attributes 
of individual nodes and the relationships between 
nodes.

GNN layers are the fundamental components that 
enable the network to learn from the connections 
within the graph data structure. Each layer aggregates 
information from the feature vectors of neighboring 
nodes and combines it with the current node’s feature 
vector to generate new representations.

In GNNs, activation functions are employed to in-
troduce non-linearities to the outputs of each layer, 
allowing the network to learn complex patterns in the 
data. The choice of activation function in a GNN de-
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pends on the nature of the input data and the specific 
application. Different activation functions can have 
varying effects on the training process and the perfor-
mance of the network.

Pooling and aggregation are used in GNNs to re-
duce the dimensionality of the feature space and to 
enable the network to handle graphs of varying sizes. 
Pooling refers to the process of consolidating infor-
mation from multiple nodes or subgraphs into a sin-

gle representation. Aggregation, on the other hand, 
involves combining information from neighboring 
nodes into a single representation for each node. Ag-
gregation is often used in conjunction with pooling 
to create more compact representations of the graph 
data. By pooling and aggregating information from 
multiple nodes and subgraphs, the network can learn 
more effectively and produce scalable representations 
of graph data.

Figure 12. Schematic workflow of a general GNN.

Figure 12 illustrates the workflow of a GNN sche-
matically. The graph dataset is input to the network 
and passed through GNN layers that incorporate the 
fundamental components described above. The loss 
function is applied as in other deep learning systems, 
and the network is trained until a predefined error 
threshold or number of iterations is reached. The task 
is typically a classification at the node, edge, or graph 
level. Finally, the trained model is evaluated by mak-
ing predictions on the test data (Sharma, Singh, & 
Ratna, 2024).

Node-level tasks focus on determining the identi-
ty or function of each node within a graph. They are 
typically used when working with unlabeled data; for 
instance, predicting whether a specific individual is a 
smoker.

Edge-level tasks  (link prediction) concentrate on 
analyzing the relationships between pairs of nodes in a 
graph. An example of such a task is assessing the likeli-
hood or compatibility of a connection between two en-

tities. On platforms such as Netflix, an edge-level task 
may involve predicting the next video to recommend 
based on a user’s viewing history and preferences.

Graph-level tasks aim to predict an overall prop-
erty or behavior that encompasses the entire graph. 
For example, in the evaluation of a newly synthesized 
chemical compound, a graph-level task may seek to 
determine whether the molecule has the potential to 
serve as an effective drug (Khemani et al., 2024).

GNN Models

GNNs have been developed in various architec-
tures based on their application domains and can be 
broadly categorized into four main types: RecGNNs, 
ConvGNNs, Graph Autoencoders (GAEs), and Spa-
tio-Temporal Graph Neural Networks (STGNNs) 
(Park, Yi, & Ji, 2020).

RecGNNs are among the pioneering architec-
tures of GNNs and aim to learn node representations 
through an iterative information exchange mecha-
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nism. This approach refines the concept of message 
passing and serves as the foundation for the develop-
ment of ConvGNNs.

ConvGNNs generalize traditional convolution 
operations from grid-structured data to graph-struc-
tured data and generate high-level node representa-
tions by stacking multiple graph convolution layers. 
ConvGNNs are widely used in a variety of tasks, in-
cluding node classification and graph classification.

GAEs are based on an unsupervised learning ap-
proach and aim to encode nodes or entire graphs into 
a latent vector space from which the original graph 
structure can be reconstructed. They are effectively 
used in applications such as network embedding and 
graph generation.

STGNNs aim to learn latent patterns from dynam-
ic data by simultaneously modeling spatial and tem-
poral dependencies within graph-structured informa-
tion. These models are widely applied in time-sensitive 
tasks, particularly in traffic speed prediction and hu-
man activity recognition (Wu et al., 2021).

Recurrent Neural Networks (RNNs)

RNNs are deep learning models specifically de-
signed to process sequential data. Unlike traditional 
feedforward neural networks (FFNs), RNNs can re-

tain information from previous inputs in their mem-
ory and utilize this information when processing new 
data. This capability enables the network to effectively 
learn temporal dependencies and sequential patterns 
(Lipton, Berkowitz, & Elkan, 2015; Park, Yi, & Ji, 
2020; Yang et al., 2019a).

RNNs are an extension of FFNs; however, unlike 
FFNs, RNNs incorporate recurrent connections be-
tween hidden units, thereby providing the model with 
temporal context information. This structure allows 
RNNs to effectively process sequential dependencies 
in time-series data. The network is designed with a 
hidden state mechanism that retains information 
from previous inputs, and its core architecture con-
sists of an input layer, a hidden layer, and an output 
layer. At each time step, the hidden units receive in-
formation both from the current data point and from 
the hidden state of the previous step; consequently, 
the output is computed using both the current and ac-
cumulated past information, facilitating a cyclic flow 
of information within the network. This recurrent 
mechanism enables the learning of long-term depen-
dencies (Lipton et al., 2015; Mienye, Swart, & Obaido, 
2024). Figure 13 presents a structural comparison be-
tween the general FFN and RNN architectures.

Figure 13. Structural Comparison of general FFNs and RNNs.

Training RNNs is a complex process, particularly 
due to the challenges encountered when learning long-
term dependencies. During training, the Backpropa-
gation Through Time (BPTT) algorithm is applied 
(Lipton et al., 2015; Park et al., 2020; Yang et al., 2019a).

During backpropagation, the propagation of er-
rors through time often leads to the vanishing gradient 
and exploding gradient problems. The exploding gra-
dient problem arises when the gradient norms grow 
excessively during training, causing unstable learning. 
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To address this issue, the Truncated Backpropagation 
Through Time (TBPTT) method has been proposed, 
which limits the span of error propagation, enabling 
more stable and balanced learning.

On the other hand, the vanishing gradient prob-
lem occurs when gradients exponentially decay over 
time, hindering the model’s ability to learn long-term 
dependencies (Pascanu, Mikolov, & Bengio, 2013). To 
overcome this limitation, the Long Short-Term Mem-
ory (LSTM) network has been proposed, enabling ef-
fective learning of long-term dependencies.

Although structurally similar to conventional 
RNNs, LSTMs employ memory cells instead of hid-
den units, allowing them to learn long-term depen-
dencies. Each memory cell maintains its own internal 
state, which helps prevent information loss over time. 
LSTMs utilize input and output gates to control when 
information is written to or read from memory and 
employ a constant error carousel mechanism to miti-
gate vanishing or exploding gradients. Thanks to these 
capabilities, LSTMs are widely applied in fields such as 
natural language processing, speech recognition, and 
handwriting recognition (Lipton et al., 2015).

As an alternative to LSTMs, the Gated Recurrent 
Unit (GRU) architecture has been proposed, offering 
comparable performance while featuring a simpler 
structure and fewer parameters, thereby accelerating 
the training process (Mienye et al., 2024).

Another successful RNN architecture is the Bidi-
rectional Recurrent Neural Network (BRNN). BRNNs 
can learn both past and future context by processing 
input sequences in both forward and backward direc-
tions. The BRNN architecture consists of two separate 
hidden layers: one processes the inputs in the forward 
temporal direction, while the other operates in re-
verse. This bidirectional processing allows the model 
to make predictions at each time step based on both 
previous and subsequent inputs. However, the depen-
dence on future information may limit the applica-
bility of BRNNs in online learning or real-time data 
processing scenarios. Nevertheless, for fixed-length 

sequences, this bidirectional structure offers signifi-
cant performance advantages.

LSTM and BRNN architectures possess comple-
mentary characteristics, and their combination—Bi-
directional LSTM (BLSTM)—has demonstrated su-
perior performance in sequential data tasks such as 
phoneme classification and handwriting recognition 
(Lipton et al., 2015).

Autoencoders (AEs)

Autoencoders (AEs) serve as fundamental build-
ing blocks that enable the hierarchical structuring of 
deep neural network models. These networks are de-
signed to learn and reconstruct input data. By organiz-
ing, compressing, and extracting high-level features 
from the data, they facilitate unsupervised learning 
and the discovery of nonlinear features. In unsuper-
vised learning, the primary objective is to transform 
raw data into more meaningful and information-rich 
representations.

AEs are feedforward neural networks that trans-
mit information unidirectionally and are particularly 
prominent in tasks such as feature learning and di-
mensionality reduction. Consequently, they are wide-
ly applicable across different data types and domains.

The most basic autoencoder, which does not incor-
porate additional complexity or architectural modifica-
tions, is referred to as the “vanilla autoencoder.” A basic 
autoencoder typically consists of an input layer (encod-
er), one or more hidden layers (latent space), and an out-
put layer (decoder). This structure compresses the input 
data into intermediate representations and subsequently 
reconstructs the original input from these representa-
tions (Berahmand, Nasiri, & Karimi, 2024). Figure 14 
provides a visual depiction of the architecture of a gen-
eral autoencoder neural network.

Conventional autoencoders typically employ a 
single-layer encoder. However, this limitation can 
impede the learning of deep and abstract features. To 
address this issue, deeper network architectures and 
layer-wise learning approaches have been developed. 
In this context, Stacked Autoencoders (SAEs) are con-
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structed by hierarchically stacking multiple basic au-
toencoders layer by layer.

SAEs adopt the principle of layer-wise learning, 
wherein each autoencoder compresses the data into 
a lower-dimensional representation to extract high-

er-level features. The final output is obtained from the 
combined outputs of all individual autoencoders. This 
approach enables the learning of deeper and more ab-
stract representations and allows for effective model-
ing of complex data structures.

Figure 14. Schematic depiction of the architecture of a general AE.

The training of autoencoders involves hyperpa-
rameter and architectural design choices that directly 
affect model performance. These decisions are typi-
cally optimized through experimental evaluation and 
validation procedures to achieve task-specific perfor-
mance objectives.

The depth of the network and its capacity to cap-
ture complex data patterns are primarily determined 
by the number of hidden layers. Increasing the num-
ber of layers can enhance representational capacity 
but also introduces optimization challenges and raises 
the risk of overfitting.

The bottleneck structure refers to the latent lay-
er that compresses the most essential features of the 
input data. The dimensionality of this layer governs 
the trade-off between information retention and com-
pression. An excessively small bottleneck may lead to 
significant information loss.

Activation functions enhance the network’s ability 
to model nonlinear relationships, thereby improving 
its representational power. Functions such as Sigmoid, 
Tanh, ReLU, and SELU are commonly employed in 
autoencoder architectures.

Optimization algorithms update the weights and 
biases to minimize the loss function. Techniques such 
as Stochastic Gradient Descent (SGD), Adam, and 
Adagrad are selected based on dataset size and model 
complexity.

The learning rate determines the step size of weight 
updates; excessively high or low values can adversely 
affect the training process.

The batch size refers to the number of samples 
used in each optimization step. Smaller batches pro-
vide faster but noisier updates, whereas larger batches 
offer more stable gradients at the cost of higher mem-
ory usage. The optimal batch size should be chosen 
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according to the scale of the dataset and the available 
computational resources (Berahmand et al., 2024).

AE Models

Autoencoders can be adapted for different data 
types and tasks through architectural modifications 
and objective function adjustments, offering a broad 
range of applications.

Regularized Autoencoders (RAEs) aim to repre-
sent data in a compressed latent space while applying 
regularization constraints to ensure that the learned 
representations exhibit meaningful and structured 
characteristics. These regularization techniques pro-
mote the learning of sparse representations, manifold 
structures, or orthogonal features, enhancing inter-
pretability and robustness.

Robust Autoencoders are designed to handle noisy 
or corrupted inputs and improve model resilience 
against common real-world data issues such as out-
liers and missing values. Robust AE models are com-
monly classified into three main categories: Denois-
ing Autoencoders (DAE), Marginalized Denoising 
Autoencoders (mDAE), and L₂,₁-norm Autoencod-
ers, each offering varying degrees of robustness and 
reconstruction fidelity.

GAEs go beyond traditional data compression 
by learning the underlying probability distribution 
of the data, thereby enabling the generation of new 
samples resembling the training data. Among these, 
Variational Autoencoders (VAEs) have attracted sig-
nificant attention in unsupervised learning due to 
their ability to represent and compress complex data 
distributions. In pharmaceutical research, VAEs have 
been effectively utilized in the discovery and design of 
novel drug molecules, with a notable example being 
the pioneering work conducted by Gómez-Bombarel-
li et al. (2018) (Gangwal et al., 2024).

Convolutional Autoencoders (CAEs) employ con-
volutional layers in both encoder and decoder mod-
ules instead of fully connected layers, allowing them 
to capture spatial dependencies within the data. CAEs 
have demonstrated high performance in image-relat-

ed tasks, including image denoising, inpainting, seg-
mentation, and super-resolution.

Recurrent Autoencoders (RAEs) are tailored for se-
quential data (e.g., time series) and incorporate archi-
tectures such as Long Short-Term Memory (LSTM) 
or Gated Recurrent Units (GRU) in their encoder and 
decoder modules. This allows them to effectively pre-
serve and learn from temporal dependencies within 
the sequence data.

GAEs aim to enhance the efficiency of graph 
analysis by transforming graph-structured data into 
lower-dimensional embeddings. In this architecture, 
the encoder compresses the input graph into a vec-
tor representation, and the decoder reconstructs the 
original graph structure from this latent space. When 
combined with models like Graph Convolutional 
Networks (GCNs), GAEs can effectively capture node 
attributes and topological relationships, offering sig-
nificant advantages in graph-based learning tasks 
(Berahmand et al., 2024).

Generative Adversarial Networks (GAN)

Developed in 2014, GANs represent a significant 
milestone in generative artificial intelligence (GAI)-
based modeling. These models are capable of learning 
the fundamental distribution of real-world data and 
generating various types of synthetic data, such as im-
ages, videos, and even molecular structures. By em-
ploying an adversarial training strategy, GANs enable 
the creation of new compounds with desired proper-
ties. In particular, GAN-based approaches have been 
effectively utilized in drug discovery to expand the 
chemical space and identify novel chemical structures 
(Gangwal et al., 2024).

GANs consist of two adversarial neural networks: 
a generator (G) and a discriminator (D). Typically 
constructed using convolutional and/or fully connect-
ed layers, these two models are trained in opposition 
to one another, continuously improving in response 
to each other’s performance (Creswell et al., 2018).

In the GAN architecture, the generator network 
produces synthetic data samples and presents them 
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to the discriminator. The generator aims to map from 
a latent variable space to the data space, generating 
samples that closely resemble the true data distribu-

tion. Conversely, the discriminator is trained to deter-
mine whether a given input originates from the real 
dataset or has been generated by the generator.

Figure 15. Schematic workflow of a general GAN.

The discriminator is optimized to assign high 
probabilities to real data and low probabilities to syn-
thetic (fake) data. Meanwhile, the generator seeks to 
deceive the discriminator into classifying its outputs 
as real, thereby maximizing the likelihood that its gen-
erated data will be perceived as genuine. This adver-
sarial process is grounded in zero-sum game theory: 
while the generator minimizes its loss the discrimi-
nator simultaneously strives to maximize its classi-
fication accuracy. Figure 15 illustrates the schematic 
workflow of the GAN architecture.

The ultimate objective of GANs is to establish a 
Nash equilibrium between the generator and dis-
criminator networks. Theoretically, this equilibrium 
is reached when the distribution of data produced by 
the generator aligns with the true data distribution. 
At this point, the generator has effectively learned the 
real data distribution and can produce novel, highly 
realistic samples that are indistinguishable from gen-
uine inputs (Gui, Sun, Wen, Tao, & Ye, 2021; Oussidi 
& Elhassouny, 2018). However, achieving this equilib-
rium is challenging, as real and generated data occupy 
only limited regions within the same space.

When the discriminator rapidly attains high ac-
curacy, the gradients propagated to the generator 

approach zero, causing the learning process to stall. 
Additionally, the alternating parameter updates of the 
two networks can introduce instability during train-
ing; under such conditions, the generator tends to 
produce highly similar outputs for different inputs—a 
phenomenon known as mode collapse.

One of the first major improvements addressing 
these issues was introduced through the Deep Con-
volutional GAN (DCGAN) architecture. The reduc-
tion of fully connected layers and the use of batch 
normalization enhanced the stability and efficiency of 
training deeper networks. Moreover, employing leaky 
ReLU activation functions in the intermediate layers 
of the discriminator yielded superior performance 
compared to conventional activations.

Subsequently, several heuristic methods were 
proposed to further stabilize GAN training. Among 
these, feature matching allows the generator to learn 
by imitating the intermediate activations of the dis-
criminator rather than solely attempting to deceive it. 
The mini-batch discrimination technique introduces 
an additional input feature to the discriminator, pre-
venting the generator from producing identical or 
overly similar outputs. Additionally, label smoothing 
sets the target label for real samples to 0.9 instead of 
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1.0, thereby softening the discriminator’s decision 
boundary, reducing overconfidence, and providing 
the generator with more balanced gradients.

To mitigate the vanishing gradient problem—a key 
challenge—f-GAN was proposed by generalizing the 
loss function used in classical GANs. This approach 
provides greater flexibility to the training process.

Subsequently, the Wasserstein GAN (WGAN) 
model was developed to address the vanishing gra-
dient problem inherent in classical GANs. WGAN 
provides the generator with more meaningful and 
stable gradients, thereby enhancing the overall stabil-
ity of the training process. In this model, the discrim-
inator—referred to as the “critic”—does not perform 
probabilistic classification; instead, it measures the 
distance between the real and generated data distri-
butions.

In general, GANs are highly powerful models 
capable of generating new data from random noise. 
However, challenges such as vanishing gradients, 
convergence difficulties, and mode collapse make the 
training process highly complex. Successful training 
of GANs depends on maintaining a balanced adver-
sarial dynamic between the generator and the dis-
criminator. Consequently, through various developed 
approaches over time, the training strategies of GANs 
have become more stable, balanced, and efficient 
(Creswell et al., 2018).

GAN Models

The original GAN (Vanilla GAN) architecture 
paved the way for the emergence of various struc-
tural and methodological variants. One of the major 
challenges in GAN training is the vanishing gradient 
problem, which can severely impede model conver-
gence. To address this issue, the Wasserstein GAN 
(W-GAN) model was developed, measuring the dif-
ference between real and generated data distributions 
using the Wasserstein distance and enforcing a Lip-
schitz continuity constraint on the discriminator; this 
results in a more stable training process.

Nevertheless, W-GAN may still experience subop-

timal sample generation or convergence issues under 
certain conditions. To overcome these limitations, the 
Loss-Sensitive GAN (LS-GAN) model was proposed, 
aiming to achieve a more balanced learning process 
by controlling the discriminative capacity of the dis-
criminator. Both approaches preserve the core struc-
ture of GANs while employing different strategies to 
enhance training stability (Sengar, Hasan, Kumar, & 
Carroll, 2024).

Since the Vanilla GAN architecture does not have 
direct access to label information during data gener-
ation, its ability to perform controlled data synthe-
sis is limited. To address this, the Conditional GAN 
(CGAN) was developed. CGAN integrates auxiliary 
information, such as class labels, into both the gener-
ator and discriminator, enabling data generation con-
ditioned on specific attributes (Navidan, Dehghan-
tanha, & Parizi, 2021).

Extending the CGAN approach, InfoGAN was 
developed to strengthen the relationship between 
observed data and latent variables. This model max-
imizes the generator’s loss while minimizing the dis-
criminator’s loss, thereby increasing the mutual de-
pendency between generated data and latent codes. 
Consequently, it enhances the interpretability of the 
generative process and provides a more structured 
and disentangled generation mechanism (Sengar et 
al., 2024; Wang, She, & Ward, 2021).

Designed for semi-supervised learning, the Auxil-
iary Classifier GAN (AC-GAN) allows the generated 
samples to be classified according to both real/fake 
status and class labels, enabling more targeted and la-
bel-informed data generation (Navidan et al., 2021).

A significant architectural advancement in GANs 
was achieved with the Deep Convolutional GAN 
(DCGAN), which employs deconvolution operations 
in the generator to better model spatial patterns and 
utilizes convolutional layers for more realistic data 
generation.

The Laplacian Pyramid Adversarial Network 
(LAPGAN) aims to produce high-resolution outputs 
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from low-resolution inputs. Using a multi-scale learn-
ing approach based on Laplacian pyramids, it gener-
ates sharper and more detailed images through pro-
gressive resolution enhancement (Wang et al., 2021).

While classical GANs focus solely on generating 
data from latent variables, the Bidirectional GAN 
(BiGAN) introduces a mechanism to map real data 
into the latent space, providing a unified framework 
for both data generation and representation learning.

Adversarial Autoencoders combine traditional au-
toencoder architectures with the adversarial learning 
framework to learn more structured and semantically 
rich latent representations. Building on this concept, 
the Adversarial Variational Bayes (AVB) model was 
developed, enhancing the Variational Autoencoder 
(VAE) framework with adversarial learning to obtain 
more expressive data representations (Creswell et al., 
2018).

REAL-WORLD APPLICATIONS

In recent years, the integration of AI technologies 
into drug discovery processes has garnered significant 
attention due to their potential to reduce development 
costs and accelerate timelines. AI-based approaches 
are increasingly being adopted, particularly with the 
aim of identifying novel therapeutic candidates more 
efficiently and at lower cost.

AI-Assisted Molecular Discovery Approaches in 
Scientific Literature

In a study conducted by Chen et al. in 2020, an 
artificial intelligence-based approach was developed 
to identify potential dual inhibitors targeting fibro-
blast growth factor receptor 4 (FGFR4) and epider-
mal growth factor receptor (EGFR). In this work, four 
different machine learning modelsincluding SVM 
and Random Forest (RF) were trained to predict the 
biological activities of both targets. The IC₅₀ values of 
843 compounds for FGFR4 and 5,088 compounds for 
EGFR were collected from BindingDB to support the 
modeling process.

The results demonstrated that the SVM model 
achieved the highest prediction accuracy for both tar-
gets. This model was subsequently applied to predict 
the biological activities of a set of in house compounds 
previously synthesized and archived by the research 
group. To evaluate the accuracy of the predictions, the 
kinase inhibition potentials of selected compounds 
were experimentally tested. Among these, compound 
1 exhibited significant inhibitory activity against both 
FGFR4 (IC₅₀ = 86.2 nM) and EGFR (IC₅₀ = 83.9 nM) 
kinases. 

In conclusion, this study demonstrates the feasi-
bility of in silico modeling for predicting dual-target 
inhibition against FGFR4 and EGFR kinases, offering 
a valuable methodological framework for assessing 
the biological activity of compounds in early-stage 
drug discovery. Compound 1, selected based on pre-
dictive modeling, showed potent inhibitory activity 
against both targets and emerged as a promising can-
didate for further investigation. Compound 1 is illus-
trated in Figure 16 (Chen et al., 2020).

In the previously discussed study, classical ma-
chine learning algorithms were prominent; however, 
the following example demonstrates the modeling ca-
pacity of these technologies in drug discovery through 
a deep learning-based approach enriched with graph 
neural network architectures.

Zhi, Zhao, Lee, & Chen (2021) developed an AI-as-
sisted multilayered approach for the discovery of novel 
dihydroorotate dehydrogenase (DHODH) inhibitors 
that may be effective in the treatment of small-cell 
lung cancer (SCLC). In this study, both GNN archi-
tectures and traditional machine learning algorithms 
namely, RF and SVR were utilized to evaluate the bio-
logical activity of candidate compounds through var-
ious modeling techniques. The workflow employed in 
this process is presented below in Figure 17.
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Figure 16. Structure of Compound 1 identified by Chen et al. As a dual FGFR4/EGRF inhibitor.

 Figure 17.  Workflow diagram of the study conducted for the discovery of DHODH inhibitors.

The modeling process was based on two primary 
data sources: data on known inhibitors with biological 
activity were retrieved from the ChEMBL database, 
while potential novel compound candidates were ob-
tained from the ZINC database. The retrieved struc-
tures were subjected to molecular docking analysis 
against DHODH (PDB: 6QU7) and the related pro-

tein UMPS (PDB: 3MI2). Binding scores and interac-
tion profiles were evaluated to select lead compounds.

Subsequently, the selected compounds were ana-
lyzed using three different GNN architectures, as well 
as RF and SVR models. The results demonstrated that 
graph neural networks achieved higher accuracy in 
predicting biological activity compared to traditional 
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methods. The top performing compounds were then 
subjected to MD simulations, in which the binding 
stability and interaction dynamics of the ligand–pro-
tein complexes were thoroughly assessed.

As a result of these analyses, three compounds 
ZINC8577218, ZINC95618747, and ZINC4261765 
were identified as exhibiting high binding stability 

and potential inhibitory effects on the DHODH tar-
get. These findings highlight the potential of deep 
learning-assisted modeling as a powerful tool for 
identifying effective compounds in early-stage drug 
discovery (Zhi et al., 2021). The structural represen-
tations of these three lead candidate compounds are 
presented in Figure 18. 

Applications of AI-Based Molecule Discovery in The 
Pharmaceutical Industry

In January 2020, the British pharmaceutical com-
pany Exscientia announced the initiation of Phase I 
clinical trials for DSP-1181, a compound developed 
for the treatment of obsessive-compulsive disorder 
(OCD). DSP-1181 was designed using an artificial 
intelligence platform that screens chemical libraries 
to identify the most promising candidates, making it 
the first AI-designed drug candidate to enter human 
clinical trials. Exscientia developed this molecule in 
collaboration with Japan-based Sumitomo Dainip-
pon Pharma and completed the process from initial 
screening to preclinical testing in just 12 months. In 
contrast, this stage typically takes an average of 4–6 
years in the pharmaceutical industry, and only about 1 
in 1000 screened molecules generally advance to clini-
cal phases (Burki, 2020). 

Similarly, Insilico Medicine has made notable 
progress in AI-driven drug discovery. In February 
2022, the company initiated a Phase I clinical trial for 
ISM001-055, a small-molecule inhibitor developed for 
the treatment of idiopathic pulmonary fibrosis (IPF). 
The discovery process of ISM001-055 was entirely 
AI-driven, from target selection via the PandaOmics™ 
platform to molecule design using the Chemistry42™ 

engine. The company emphasized that the total time 
from target identification to Phase I trial initiation 
was less than 30 months (Insilico Medicine, 2022). 

In January 2022, within the framework of a collab-
oration between Insilico Medicine and Fosun Phar-
ma, ISM004-1057D was developed as a modulator of 
the QPCTL enzyme, which plays a regulatory role in 
the CD47–SIRPα axis—an important signaling path-
way in immuno-oncology. This molecule has been ad-
vanced to the preclinical stage as a potential first-in-
class small-molecule inhibitor targeting this pathway 
(Kirkpatrick, 2022). 

For the treatment of anemia associated with chron-
ic kidney disease, a PHD1/2 inhibitor was discovered 
using Insilico Medicine’s Pharma.AI platform. Le-
veraging structural information of target proteins, a 
structure-based virtual screening approach was imple-
mented through the Generative Chemistry application 
to design candidate molecules targeting the PHD1/2 
enzymes. These candidates were optimized over sever-
al iterations in terms of physicochemical properties as 
well as in vitro and in vivo ADME profiles, and subse-
quently evaluated in preclinical studies. In June 2023, 
an Investigational New Drug (IND) application was 
submitted in China, and Phase I clinical trials are cur-
rently ongoing (Insilico Medicine, 2025).

Figure 18. 2D structural representations of the compounds identified as potential DHODH inhibitors: 
a) ZINC8577218, b) ZINC4261765, and c) ZINC95618747.
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In the field of rare diseases, HLX-1502, developed 
by Healx, stands out as a promising candidate. Discov-
ered through Healx’s AI-driven platform, HLX-1502 
has been granted Fast Track, Orphan Drug, and Rare 
Pediatric Disease designations by the U.S. Food and 
Drug Administration (FDA). The compound complet-
ed its Phase I clinical trials in 2024 and is currently 
being evaluated in Phase II as of 2025 (Healx, 2024).  

Exscientia and Recursion are two additional key 
players attracting attention for their work in AI-driv-
en drug discovery. These companies aim to accelerate 
the drug development process and deliver novel ther-
apeutic options for rare and serious diseases through 
their technology-based platforms.

Within this context, Exscientia’s CDK7 inhibitor 
REC-617, intended for the treatment of advanced sol-
id tumors, is expected to have Phase I monotherapy 
safety and pharmacokinetic/pharmacodynamic data 
disclosed by the end of 2024. Additionally, updated 
Phase I dose-escalation data for the RBM39-targeting 
compound REC-1245 are anticipated in the first half 
of 2026. Initial patient dosing for the MALT1 inhib-
itor REC-3565 and the LSD1 inhibitor REC-4539 is 
projected to occur in Q1 and the first half of 2025, re-
spectively. For REC-4881, a MEK1/2 inhibitor being 
developed for familial adenomatous polyposis, Phase 
1b/2 safety and efficacy data are expected in the first 
half of 2025. As for REC-2282, an HDAC inhibitor 
targeting neurofibromatosis type 2, results from the 
PFS6 (6-month progression-free survival) analysis are 
scheduled to be released in 2025.

Furthermore, the development candidate for 
REV-1025, an ENPP1 inhibitor for the treatment of 
hypophosphatasia, is expected to be identified in Q4 
of 2024. An update on the Phase II progress of REC-
3964, developed to prevent recurrent Clostridium 
difficile infections, is planned for Q1 2026. Finally, 
IND-enabling studies are ongoing for REC-4209, an 
investigational compound targeting idiopathic pul-
monary fibrosis, whose molecular target has not yet 
been disclosed (Exscientia, 2024).

In the field of antibiotic discovery, a study pub-
lished in Cell in February 2020 reported the identifica-
tion of a novel antibiotic using a deep learning-based 
model. The researchers trained a neural network on 
a dataset comprising 2,335 compounds to identify 
molecules capable of inhibiting E. coli growth. Sub-
sequently, the model was applied to a library of 6,111 
molecules. Based on the model’s predictions, the 
compound coded as SU3327 was identified for its 
antibacterial activity and renamed “Halicin”—a ref-
erence to the artificial intelligence system HAL 9000 
from Stanley Kubrick’s film 2001: A Space Odyssey. 
Halicin demonstrated efficacy not only against E. coli 
but also against multidrug-resistant pathogens such 
as Clostridium difficile and Acinetobacter baumannii. 
However, this compound has not yet progressed to 
clinical trials (Burki, 2020).

Overall, AI-driven drug discovery studies have 
demonstrated significant success in accelerating de-
velopment processes and identifying novel molecular 
entities. AI technologies, particularly in the stages of 
target identification, molecule design, and prioritiza-
tion, have overcome limitations inherent in tradition-
al approaches and introduced a new paradigm. Re-
al-world applications confirm that AI serves not only 
as a theoretical promise in drug discovery but also as 
a transformative tool in practice.

ARTIFICIAL INTELLIGENCE-ENABLED 
DRUG DEVELOPMENT & EVALUATION PRO-
CESSES

Preclinical Stages

In preclinical stages, evaluating drug exposure in 
humans and optimizing the pharmacokinetic (PK) 
profile represent key objectives of drug discovery 
and development efforts (Healx, 2024). Since the late 
1990s, it has become increasingly evident that inade-
quate pharmacokinetic properties of candidate mole-
cules are a leading cause of clinical failures, prompting 
significant paradigm shifts within the pharmaceutical 
industry (Exscientia, 2024). Even today, poor ADME 
characteristics of small-molecule drug candidates 
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remain one of the primary reasons for development 
setbacks. However, recent years have witnessed con-
siderable advancements in addressing these issues 
(Obrezanova, 2023).

During the drug discovery process, prior to first-
in-human (FIH) studies, dose estimation and expo-
sure assessment are typically carried out using in vivo 
animal models and in vitro systems derived from hu-
man sources. Physiologically Based Pharmacokinetic 
(PBPK) models simulate the time-dependent ADME 
behavior of drugs through mathematical formulations 
and contribute significantly to predicting biopharma-
ceutical profiles in humans, especially in advanced 
development stages. However, due to their high cost 
and limited scalability, PBPK models often fall short 
in enabling the rapid screening of large numbers of 
candidate compounds (Obrezanova, 2023).

One of the main challenges in PBPK modeling 
lies in the lack of compound-specific pharmacoki-
netic parameters for newly developed drugs. The 
absence of experimentally validated parameter data 
for most novel molecules limits the predictive accu-
racy of these models. To overcome this gap, several 
researchers have proposed integrated systems that 
combine simplified PBPK frameworks with ML algo-
rithms to predict various PK parameters. This emerg-
ing approach is regarded as a multi-step process for 
the characterization and optimization of key ADME 
properties (Chou & Lin, 2023). 

In the initial phase, databases containing in vivo 
time–concentration profiles and pharmacokinetic pa-
rameters are either constructed or derived from exist-
ing resources. Within this framework, the structural 
and physicochemical properties of selected drugs, 
along with in vitro ADME experimental data, must 
also be compiled.

In the second phase, ML/AI-based computation-
al models are developed using these datasets, and the 
models are then employed to predict various ADME 
parameters—such as the tissue-plasma partition co-
efficient (Kp), clearance (Cl), and unbound fraction 

(fu)—based on the structural and physicochemical 
attributes of the compounds. The predicted values are 
subsequently integrated into a general PBPK model.

In the third phase, time–concentration profiles 
in plasma and tissues are simulated using the inte-
grated model, allowing for the estimation of key PK 
parameters such as the area under the curve (AUC) 
and maximum concentration (Cmax). The resulting 
simulation data can either enhance existing databases 
or contribute to the development of new datasets for 
future modeling cycles (Chou & Lin, 2023). 

In pharmacokinetic simulations specifically de-
veloped for animal models, a broad spectrum of 
methodologies has been employed—ranging from 
traditional ML techniques to advanced approaches 
such as deep learning. For example, Obrezanova and 
colleagues utilized a dataset comprising over 3,000 
compounds to model time–concentration curves for 
nine different PK parameters following both intrave-
nous and oral administration in rats. In their study, 
high-accuracy curve predictions were achieved for in-
travenous applications; however, only limited success 
was obtained for oral routes (Obrezanova, 2023).  

There are certain structural challenges associated 
with modeling human pharmacokinetics using ML 
and AI techniques. One major limitation is the rela-
tively small amount of available data for human PK 
modeling compared to preclinical animal data. While 
datasets for humans are typically limited to around 
1,400 compounds, animal-based datasets encompass 
5,000 to 60,000 compounds. Furthermore, due to the 
inherent constraints of clinical trials—such as high 
costs, long durations, and ethical or regulatory bar-
riers—the expansion of human PK data occurs at a 
much slower pace.

In addition, compounds entering clinical trials are 
often selected based on “desirable” pharmacokinetic 
profiles, such as low clearance and high bioavailabili-
ty. As a result, ML training datasets tend to underrep-
resent compounds with “suboptimal” properties, such 
as low bioavailability or high clearance. This under-
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representation hinders the models’ ability to learn the 
full spectrum of pharmacokinetic behavior and limits 
their generalizability.

Moreover, human data involve substantially great-
er complexity compared to controlled animal studies, 
due to inter-individual variability, disease states, di-
etary factors, and variations in measurement tech-
niques. Consequently, a rigorous data curation pro-
cess is essential when working with human-derived 
datasets. 

In this context, Miljkovic et al. utilized a curated 
dataset of 1,000 clinical compounds to predict 12 dif-
ferent intravenous and oral human PK parameters. 
They employed random forest algorithms along with 
2D chemical descriptors and selected in vivo rat PK 
parameters. The models developed for predicting 
oral Cmax, AUC, and volume of distribution (Vd) 
demonstrated sufficient accuracy to be considered us-
able during the design stage and were validated using 
clinical data provided by AstraZeneca (Obrezanova, 
2023).  

Accurate and rapid prediction of pharmacoki-
netic parameters in the preclinical phase is a critical 
requirement for enhancing the efficiency of drug 

discovery processes. In this regard, in silico AD-
MET modeling, which enables pharmacokinetic 
predictions based solely on chemical structures and 
fundamental molecular properties, has emerged as 
a valuable scientific tool. These approaches improve 
the effectiveness of project teams in designing and se-
lecting molecules with favorable ADMET profiles and 
aim to reduce the number of compounds that need to 
be synthesized and experimentally tested by directing 
resources toward more promising candidates (Chou 
& Lin, 2023).

In recent years, the growing availability of exper-
imental ADMET data, combined with advances in 
artificial intelligence algorithms, has led to the devel-
opment of numerous AI-based tools for predicting 
ADMET properties. These tools significantly contrib-
ute to the efficient evaluation of candidate molecules 
in drug discovery and offer researchers substantial 
advantages in terms of both time and cost. Among 
these tools, five publicly available ADMET prediction 
platforms developed in the early 2020s have under-
gone extensive benchmarking and stand out as partic-
ularly notable. A summary of key information regard-
ing these models is presented in Table 1 (Tran, Tayara, 
& Chong, 2023).

Table 1. AI-based ADMET prediction models and key features 

Model
Latest 

Version
Number of 
Prediction

ML Algorithm Website / Source

ADMETlab 3.0 3.0 (2024) 119 GNN https://admetlab3.scbdd.com/

FP-ADMET 1.0 (2021) ≈50 RF gitlab.com/vishsoft/fpadmet

AdmetSAR 3.0 3.0 (2023) 107 RF, SVM,    k-NN https://lmmd.ecust.edu.cn/admetsar3/index.php

Interpretable-AD-
MET

1.0 (2022) 59 GCNN, GAT cadd.pharmacy.nankai.edu.cn/interpretableadmet

HelixADMET 1.0 (2022) 52 RF, GNN paddlehelix.baidu.com/app/drug/admet/train

AI-assisted Pharmaceutical Formulation Devel-
opment

Pharmaceutical formulation development is a 
multi-stage process aimed at designing safe, effective, 
and patient-compliant products by combining active 
pharmaceutical ingredients (APIs) with appropriate 
excipients (Afrin & Gupta, 2025). Traditional formu-

lation strategies predominantly rely on experimental 
trial-and-error approaches and often utilize statistical 
tools such as Design of Experiments (DoE) or Quality 
by Design (QbD) throughout the process. However, 
the multidimensional nature of formulation param-
eters frequently leads to prolonged timelines, high 
costs, and intensive labor requirements (Bao et al., 
2023).
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For instance, approximately 40% of newly devel-
oped compounds face solubility/bioavailability issues 
during early-stage screening. A large proportion of 
next-generation molecules exhibit poor aqueous solu-
bility, which reduces bioavailability and increases the 
risk of formulation failure (Bhalani, Nutan, Kumar, & 
Singh Chandel, 2022). These challenges can result in 
reduced therapeutic efficacy or compromised prod-
uct stability, further complicating the development 
process. Several reports emphasize that conventional 
formulation practices are labor-intensive, time-con-
suming, and costly due to their empirical basis (Afrin 
& Gupta, 2025). Consequently, there is a growing de-
mand for more efficient, faster, and predictive meth-
ods in pharmaceutical formulation development.

In this context, AI, ML, and DL techniques have 
initiated a significant transformation within pharma-
ceutical technology in recent years. With a compu-
tational pharmaceutics approach, drug formulations 
are being designed, optimized, and evaluated using 
big data and simulation techniques, enabling the 
extraction of meaningful relationships from experi-
mental datasets. ML models allow for the prediction 
of drug–excipient interactions and compatibilities, 
while DL networks can forecast critical parameters 
such as drug release profiles. As a result, formulation 
design has moved beyond sole reliance on laborato-
ry experimentation, evolving into a more systematic, 
rapid, and high-accuracy process (Dong, Wu, Xu, & 
Ouyang, 2023; Yang et al., 2019b).

The integration of AI into pharmaceutical formu-
lation development has led to substantial paradigm 
shifts compared to conventional approaches. Primar-
ily, AI-powered methods reduce both the number 
of experimental trials and overall development costs 
and timelines (Yang et al., 2019b). Leveraging histor-
ical datasets, predictive models can estimate critical 
properties such as solubility, bioavailability, and re-
lease kinetics in advance, thereby enabling more ac-
curate formulation decisions. Furthermore, AI-based 
systems can uncover structure–property relationships 
that may be overlooked by traditional techniques, 

thereby facilitating the identification of optimal for-
mulation combinations and the development of inno-
vative strategies (Challener, 2024).

Recent projects and platforms have demonstrat-
ed significant progress in AI-assisted pharmaceutical 
formulation development. For instance, the Formu-
lationAI platform provides pre-trained AI models 
capable of predicting formulation properties across 
a variety of systems, from cyclodextrin complexes to 
liposomal delivery systems. Users can input infor-
mation about active pharmaceutical ingredients and 
excipients to obtain predictions for multiple formula-
tion characteristics (Dong et al., 2023).

Similarly, the DE-INTERACT project has de-
veloped an AI-based system capable of predicting 
drug–excipient compatibility with 98% accuracy by 
utilizing molecular descriptors and model ensem-
ble techniques. Platforms like Intrepid Labs, which 
operate as “self-driving” laboratories, combine AI 
and robotics to automate experimental optimiza-
tion workflows, significantly shortening formulation 
development timelines (Intrepid Labs, 2024). Addi-
tionally, the AI-driven autonomous lab established 
through the collaboration between Atinary Technolo-
gies and Takeda has markedly improved formulation 
efficiency (Atinary Technologies, 2023) (Hang et al., 
2024).

Collectively, these advances illustrate how the 
integration of AI, ML, and DL technologies is trans-
forming pharmaceutical formulation development 
into a more rapid, efficient, and intelligent process. As 
these technologies become more widely adopted, it 
is expected that the timelines for drug discovery and 
development will be significantly shortened, while 
simultaneously reducing research and development 
costs.

AI Applications in Clinical Trials

The development and commercialization of a new 
drug typically span a lengthy period of 10 to 15 years 
and require high costs ranging between approximate-
ly 1.5 to 2.0 billion USD. Nearly half of this time and 
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financial investment is consumed during drug dis-
covery, optimization, and preclinical research stag-
es, while the remaining 50% is allocated to clinical 
research processes. The high failure rate observed 
during clinical trials stands out as one of the major 
obstacles in drug development. Only one-third of 
compounds that reach Phase II proceed to Phase III, 
and more than one-third of those that reach Phase 
III fail during the approval process. Considering that 
Phase III studies alone account for nearly 60% of total 
R&D costs, a failed clinical trial can result in a finan-
cial loss ranging from 0.8 to 1.4 billion USD, repre-
senting a significant portion of R&D investment.

At this point, AI technologies emerge as prom-
ising tools to make clinical research processes more 
efficient, faster, and effective. ML and DL techniques 
analyze patterns within large and diverse data sourc-
es—such as electronic health records (EHR), medical 
literature, and clinical databases—to optimize pa-
tient-trial matching processes and enable a more re-
liable assessment of clinical endpoints (Harrer, Shah, 
Antony, & Hu, 2019). 

In 2024, the Research Affairs Committee of the 
American College of Clinical Pharmacy (ACCP) con-
ducted a comprehensive review of the role of AI in 
clinical pharmacy research and scientific publishing. 
Their evaluation highlighted how AI technologies can 
be effectively utilized at various stages of scientific 
research—including research question development, 
study design, data analysis, and results reporting 
(Chan et al., 2025).

Patient recruitment is one of the major challenges 
encountered in clinical trials. In Phase I clinical stud-
ies, approximately 80% of trials experience delays in 
patient enrollment. Traditional recruitment methods 
require healthcare professionals to manually review 
large volumes of medical records, a process that is 
time-consuming, costly, and prone to human error. 
Artificial intelligence offers significant advantages in 
this regard by leveraging electronic health records, so-
cial media platforms, and other digital data sources to 

rapidly identify potential participants who meet spe-
cific study criteria. For instance, Deep 6 AI technolo-
gy is capable of screening millions of patient records 
to swiftly detect eligible candidates for clinical trials 
(Wu et al., 2024b).

Wout Brusselaers, founder and CEO of Deep 6 
AI, has emphasized that their system is not limited to 
traditional insurance records or structured EHR data. 
Instead, it harnesses the power of AI to mine deeper 
and less structured data sources, enabling the identi-
fication of target patient populations with high preci-
sion and speed.

Traditional data collection and evaluation meth-
ods often suffer from limitations such as low effi-
ciency, limited capacity, susceptibility to error, and 
a lack of real-time monitoring. Artificial intelligence 
offers promising solutions to these challenges. ML 
techniques can manage and analyze large-scale clin-
ical datasets swiftly and effectively, thereby contrib-
uting to the early identification of overlooked issues 
and hidden risks. Moreover, the analysis of real-time 
health data collected from wearable devices enables 
continuous and dynamic monitoring of participants’ 
health status, providing researchers with accurate and 
up-to-date insights.

Artificial intelligence also plays a critical role in 
the clinical trial design phase. AI-powered predictive 
analytics can analyze historical clinical trial data to 
forecast potential outcomes, supporting researchers 
in making more informed decisions regarding opti-
mal dosage selection, appropriate patient cohort iden-
tification, and the early detection of possible adverse 
events (Wu et al., 2024b).

In addition, AI holds great potential for enhanc-
ing operational efficiency and patient management in 
clinical research. AI applications in study design and 
patient stratification processes contribute to improved 
trial performance and support the development of 
targeted therapeutic strategies. Machine learning al-
gorithms can analyze prior clinical data, electronic 
health records, and genomic information to facilitate 
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the creation of more efficient study protocols and ac-
curate identification of suitable patient populations. 

One study reported a 25% reduction in protocol 
amendments and a 15% increase in patient enroll-

ment rates through the application of ML techniques. 
These tangible improvements in clinical trial efficien-
cy are summarized in Table 2 (Huang, Yang, Wen, 
Xia, & Yuan, 2024).

Table 2. The impact of artificial intelligence on clinical trial efficiency

Criterion Traditional Approach AI-Assisted Approach Improvement Rate

Protocol Amendments 4.2 per study 3.15 per study 25% reduction

Patient Enrollment Rate 60% 69% 15% increase

Study Completion Time 3.5 years 2.8 years 20% reduction

Cost Reduction - - 18% reduction

Integration of artificial intelligence into the 
healthcare and pharmaceutical sectors: ethical and 
regulatory perspectives

The integration of AI technologies into the health-
care and pharmaceutical sectors has sparked a range 
of ethical debates. One of the key concerns pertains 
to the potential impact of these technologies on the 
labor market; for instance, it has been suggested that 
AI-driven systems may reduce employment oppor-
tunities by automating tasks traditionally carried out 
by healthcare professionals. In addition, questions 
surrounding the ownership of discoveries generated 
by machine learning algorithms—and whether such 
findings can be patented—represent unresolved ethi-
cal and legal challenges.

The degree to which physicians should rely on 
health profiles generated by AI systems, the extent 
to which these systems should influence diagnostic 
processes, and the level of trust patients place in such 
recommendations are all matters of growing concern. 
The absence of assurance regarding the impartiality 
and completeness of the data used to train these al-
gorithms undermines trust in AI applications. Fur-
thermore, there is a significant risk that existing so-
cial inequalities may be exacerbated by biased models 
trained on non-representative datasets. In particular, 
insufficient representation of disadvantaged patient 
groups in training data may lead to discriminatory 
practices, thereby violating the principle of equity in 
healthcare delivery. 

The prediction of an individual’s predisposition 
to certain diseases based on pharmacogenomic data 
poses a significant ethical dilemma. While such pre-
dictive information can facilitate preventive medical 
interventions and offer potential health benefits, it 
may also exert adverse effects on an individual’s psy-
chological well-being and emotional stability. More-
over, if health insurance providers were to gain access 
to such data, they might begin to demand future risk 
reports from individuals, potentially leading to new 
ethical and privacy-related concerns.

In response to these and similar ethical challenges, 
various international platforms have been developed 
to foster global discourse on the ethical implications 
of artificial intelligence. One notable initiative is the 
Moral Machine, which provides a simulation envi-
ronment to explore ethical dilemmas encountered by 
autonomous vehicles. With input from over 40 mil-
lion participants, the platform has allowed research-
ers to examine cross-cultural variations in moral de-
cision-making. Findings have suggested that certain 
ethical principles may be shared across cultures, in-
dicating the presence of some universal moral values.

Milena Pribić, a representative of IBM, has em-
phasized that insufficient prioritization of AI ethics 
by institutions may result in adverse long-term con-
sequences. Therefore, it is imperative that AI systems 
be designed and implemented in alignment with fun-
damental ethical principles. In clinical practice, proto-
cols such as CONSORT-AI and SPIRIT-AI have been 
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introduced to enhance transparency and accountabil-
ity by ensuring that AI-driven interventions are re-
ported in a comprehensive and standardized manner 
within the context of clinical trials (Arabi, 2021).

In a study conducted by Karimian, Petelos, and 
Evers in 2021 (Karimian, Petelos, & Evers, 2022), the 
ethical challenges potentially arising from the inte-
gration of artificial intelligence into the healthcare 
sector were systematically examined. The review was 
based on the Ethics Guidelines for Trustworthy AI, 
published by the European Commission, which out-
lines seven fundamental ethical principles: human 
agency and oversight, technical robustness and safety, 
privacy and data governance, transparency, diversity 
and non-discrimination, societal and environmental 
well-being, and accountability.

Among the most frequently discussed ethical 
issues in the reviewed literature were fairness, the 
preservation of human autonomy, explainability, and 
patient privacy. Notably, the principle of non-ma-
leficence—“do no harm”—was found to be under-
represented in the existing academic discourse. Fur-
thermore, the study highlighted a substantial gap in 
the development of practical evaluation frameworks 
aimed at assessing the compliance of AI-based sys-
tems with these ethical principles. Only a limited 
number of publications offered actionable solutions 
for protecting patient privacy in healthcare settings, 
and empirical evidence supporting the operational-
ization of other ethical principles was reported to be 
scarce (Karimian et al., 2022).

In conclusion, the development and implementa-
tion of artificial intelligence technologies within ethi-
cal boundaries are of paramount importance to main-
tain a balance between technological progress and 
human values. AI solutions that operate in collabo-
ration with human expertise and complement ethical 
gaps such as intuition and emotion have the potential 
to enhance societal benefit when properly managed. 
However, the continuous ethical evaluation and re-
sponsible governance of these technologies are essen-

tial for building a more equitable and trustworthy AI 
ecosystem (Arabi, 2021).

Pharmacogenomics, Bioinformatics, and Data Pri-
vacy

Pharmacogenomics (PGx), a cornerstone of per-
sonalized medicine, aims to maximize drug efficacy 
and minimize adverse drug reactions by integrating 
individuals’ genetic characteristics into therapeutic 
decision-making processes.

The integration of AI with pharmacogenomic data 
introduces an innovative approach to precision medi-
cine and facilitates the development of individualized 
treatment strategies. For instance, models utilizing 
ML algorithms can predict drug responses based on 
patients’ genetic profiles, thereby enabling safer treat-
ment options and optimized dosage regimens. In do-
mains such as oncology—where therapeutic options 
may be limited—these models have contributed to the 
identification of novel genetic biomarkers associated 
with drug response through the analysis of transcrip-
tomic data, thereby advancing targeted drug discov-
ery processes.

However, the ethical, legal, and social implica-
tions associated with technologies developed using 
PGx data are receiving increasing attention. Among 
these concerns, genetic data privacy remains one of 
the most pressing issues. Such data not only reveal 
personal information but also encode familial biolog-
ical relationships and ancestral origins. This inherent 
sensitivity renders full anonymization challenging 
and increases the risk of re-identification through 
cross-referencing even when data are presumed to be 
anonymized. Consequently, the use of genetic data for 
training AI models necessitates the highest standards 
of data security and a strong commitment to main-
taining patient trust.

To address these concerns, the development of 
ethical guidelines for the use of AI in healthcare plays 
a pivotal role. For example, Char (2020) proposed a 
four-phase framework for assessing ethical challenges 
in AI-based healthcare applications. This framework 
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includes: (i) development and deployment of AI tools, 
(ii) establishment of regulatory and oversight mecha-
nisms, (iii) ethical evaluation of AI-driven decisions, 
and (iv) consideration of broader ethical concerns. 
Such a comprehensive approach promotes the respon-
sible and transparent implementation of AI systems in 
healthcare settings. Additionally, techniques such as 
federated learning—categorized under decentralized 
data processing strategies—help reduce the need for 
inter-institutional data sharing, thereby contributing 
to the protection of patient privacy. These methods al-
low AI models to be trained on decentralized datasets 
while preserving the confidentiality of sensitive health 
information.

In conclusion, the development of AI-based phar-
macogenomic models must be grounded in ethical 
principles, ensuring the careful handling of genetic 
data and the protection of patient confidentiality.

Employing fair and representative datasets that 
reflect genetic diversity and actively addressing algo-
rithmic biases are essential for building trustworthy 
and ethically sound AI systems. Such an approach 
not only enhances clinical efficacy but also reinforces 
public confidence in AI-driven healthcare technolo-
gies (Haga, 2024).

RESULTS AND DISCUSSION

This study has comprehensively demonstrat-
ed how AI technologies can be integrated across all 
stages of the drug-discovery process—from target 
identification and validation to lead optimization, 
from synthesis planning to ADME/Tox prediction 
and preclinical assessment. Beyond structure- and 
ligand-based virtual screening, the capacity of state-
of-the-art models—particularly graph neural net-
works—to capture complex molecular relationships 
delivers clear gains in candidate selection, target fit, 
and optimization speed. In addition to these model-
ing advances, we outline data-representation choic-
es, algorithmic architectures, and training strategies. 
Synthesis planning and synthetic-accessibility predic-
tion enhance resource efficiency and sustainability, 

while early computational ADME/Tox filters enable 
a more controlled and predictable triage of candi-
dates with the potential to advance to the clinic. In-
dustrial and academic case studies surveyed under 
Real-World Applications show that AI is not merely 
a theoretical promise but a transformative tool with 
practical impact. Nevertheless, realizing AI’s full po-
tential requires continuous improvements in data vol-
ume and quality, explainability, reproducibility, and 
governance (data security, ethics, standards). AI tech-
nologies are emerging not only as supportive tools in 
pharmaceutical research but as strategic components 
at the center of innovative drug-discovery paradigms. 
To this end, building large and balanced datasets; 
strengthening labeling and curation; defining perfor-
mance metrics transparently and comparably; mak-
ing model decision logic auditable; and corroborating 
results through independent validation are critical. 
Regulatory compliance and transparent reporting 
should be supported by end-to-end traceability, ver-
sioning, and audit trails.

At the preclinical stage, we recommend system-
atically aligning in silico predictions with in vitro/in 
vivo readouts and regularly monitoring out-of-model 
errors (dataset shift, bias). From a sustainability per-
spective, adopting low-energy, low-resource work-
flows; prioritizing synthesis routes consistent with 
green-chemistry principles; and establishing automa-
tion and active-learning cycles that improve the cost–
time balance are valuable.

In summary, the assessments presented here in-
dicate that AI is a complementary accelerator in 
pharmaceutical R&D; when robust data governance, 
explainability, reproducibility, and regulatory com-
pliance are ensured, it reduces risk while increasing 
accuracy and efficiency. To further strengthen AI in-
tegration into pharmaceutical R&D, we recommend 
enhancing interdisciplinary collaboration, priori-
tizing explainable-AI approaches, and restructuring 
health-specific ethical and regulatory standards ac-
cordingly.
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